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NOTATION AND ABBREVIATIONS

Theorems, lemmas, and tables in each chapter are numbered
serially. Equations and expressions are numbered serially in each
gsection of a chapter, the first number {ndicating the section number
and the second indicating the equation number; the Ewo numbers are
separated by a dot. If a reference is made to, say equation number
(3.2) in a chapter, it means equation 2 ef Section 3 of the chapter,
but when a reference is made to (5.3.2), it means equation 2 of
section 3 of Chapter 5.

Vectors are in general column vectors and are underscored. We
use a prime (for example, x') to denote the transpose of a vector,
or of a matrix. Usually lower case letters are used for wvectors
and capital letters for matrices but this is not a strict rule and
peeassionally even vectors are denoted by capital letters.

For a partitioned matrix, the dimensions of the different parts

are indicated outside the matrix. For example,

A B P
C D q
T 8

The determinant of a matrix A 1is denoted by det. A or by |lal. The
inverse of a matrix A is denoted by a'l and a generalized inverse
by A . The trace of a matrix {s denoted by tr.A. A diagonal

matrix A with diagonal elements &, ,8,5ece,8 iz denoted by

dlng{ul,az,...,anib
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e Lty omattin &1 ovder n e desobed by 'l“ avil the m.lhh'llpl n
v sometimes Jropped 10 therw is v chance of confusion. A pxg
matvin with all wnit elesents i denoted by FN. A vector of p
wail eleeeniz iz deownted by 'FM or E'I.p according as 1t (s a column
WRITRY ST & Tow vetor, A null matrix or vector is denoted by 0
P ,‘_q 1t the Jdimenzionz p.q are weeded ,

£

™ following abbreviations and symbols are uwaed. x » N(p aI}
]

eans the vandom variabhle x iz di
X & stributed az a normal variable

with mean ¢ and variance o

e NI(uae)y (1 = 1,2,...,k) weans the k random variables
XivesanX are independent and each has a Hfh.uz} distribution. The
svabol % iz used for other distributions also. For example It H:El“l
stands for U is distributed as a x> varisble with f degrees of
freadom.,

d.f. stands for degrees of freedom.

T.¥. stands for random variable.

P«d.f. stands for probability density function.

c.d.f. stands for cumulative distribution function.

ANOVA stands for analysis of variance.

E stands for expectation.

¥V or Var stands for variance—covariance matrix.

S.5. stands for sum of squares.

S.P. stands for sum of products.

All the references are collected at the end and numbered serially.




A COURSE IN LINEAR MODELS




Chapter 1

LINEAR MODELS

1. INTRODUCTION

Linear Statistical Models play & very important role in the
theory of statistics., The theory of linear models provides the
basic theory for a variety of important statistical techniques such
as Regression analysis, Analysis of Variance, Analysis of Covariance,
Experimental designs, Discriminant analysis, Biological assays,
Growth curve analysis, Multivariate linear models and even Time
Series analysis.

For the sake of illustration, we reproduce below a number of
linear models discussed in the literature.

{a) The cranial capacity of a skull is related to the cccipital
length, Basio-bragmatic height and Parietal breadth. If we use a
logarithmiec transformation on these variables, the statistical
relation will be

logC = a + ﬂllng L + Ezlﬂg B+ Ealug H+ e,
where C is the capacity and L, B, H are the three other variables
mentioned above. £ 13 the "random error" that distinguishes a
mathematical relation from a statistical relation. leoeg C is not
exactly equal to

a + B, log b+ 8,008 B + 8ylog 1, (1.1)
for every skull, but is distributed as a random variable with (1.1)
as the mean, ¢ is the deviation of logC from the mean. This devia-
tion may be the result of a large number of factors that may be

affecting C and are not included in the model. El. BI' Bq and a
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are the unknown parameters in the model.
(k) 1f an experiment is conducted to compare three different
types of foods, with male and female pigs iIn different pens, and

the gain In weight 18 measured, the following model may be

appropriate.
G = o4 + 5 + f +

11k Py 3 k {pu}li + fsf}jk + {p[}jk +* tijk'
Her e ﬁ:jk is the weight increase, U 15 a common general mean for
all pigs, pi ia the effect of the 1-th pen, 31 is the effect on
the j-th sex (j=l-male; j=2-female), fllt is the effect of the k-th
food. The other terms like {pa}ij are "interactions' or joint
effects of two factors like pens and sex. Eijh iz the "random

error' as in (a) above,
{c) In a biological assay, if y is the response and x is

the dose of a drug, the model may be
¥y=a+8x+e.
(d) In an agricultural experiment, if y is the yield of a

crop and V different fertilirzers are to be compared and if the
plots of lands are divided into homogenous blocks or groups or
plots, according te soil fertility, the model under consideration

could be
Tij =+ r_l + hj + Eij'
where u is the general common mean, ti is the effect of the i-th

fertilizer, bj iz the effect of the j=th block and ﬂij iz the

"random error".
{e} If t denotes time, and y is the height of an individual,

a growth curve model of the type
Y, = @ + Bt + ?tz + £,
This is linear in the parameters, o, £ and ¥,

can he considered.
In linear models, the linesarity

and quadratic in the wvariable t.
is with respect to the parameters.

(f) Consider a medical experiment to study the effectiveness
of influenza vaccines. The vaccine is injected into groups of

mice. After the antibodies are formed, the mice are sacrificed,

the serum is pooled and then successively increasing dilutions of
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Section 2. Relationship of One Variable with Others 3

the serum are formed. Each dilution is mixed with live virus=.
The virus-serum mixture is then reinjected into living organisms.
The highest dilution of serum capable of neutralizing the patho-

logic action of the virus is the "response” variable. The model
used is

Response = vaccine effect + mineral oil effect +

interaction effect of wvaceine and oil

+ experimental error.
The objective here is to investigate the effects of different

vaccines and different amounts of minearl oil on the response.

2. RELATIONSHIF OF ONE VARIABLE WITH OTHERS

Studying the relationship of one varifable with others 1s an
important seientifie activity in almost every branch of science.

It is important because such a relationship will enable us to

forecast the value of a variable in advance from others and this
will help in planning for the future.

Variables that occur in practice can be classified in many

different ways. We have qualitative variables and quantitative

variables. We have random variables and non-random variablea. We

have mathematical variables, statistical varlables and economie

variables. We have, in Econometrics, Endogeneous wariables and

Exogeneous variables.

Some variables are directly observable, some are not. For

example, the distance between two points inside the skull of a

human being, when he 1s alive is not directly observable and may

be needed for furgery. But it may be related to some other exter-

nal distances which are directly measurable. If a relation exists

between the internal distance and other external distances, it
will be wvery helpful.
Some

The yield

variables are immediately available and some are not.

of a crop is an éxample of a variable which is not

available unless the crop is ready. But it i{s related to the

amount of rainfall, quality of soil and the amount of the fertil-
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Chapter 1 Linear Models

irer used. 1If this relation is used to predict the yield, this f
will be useful in advance planning of the export policy.
Sometimes the relationship among variable is exact. The
formulae in physics or mathematics such as
S = gt + -%-ft_-1
(S = distance, t = time, u = initial velocity, f = acceleration)

or

PV = RT,

T-hfrw:l_

where P is pressure, V is volume, T is period of oscillation of a

pendulum, L = length of the pendulum, are examples of mathematical

oT

relationships or exact relationships. The exactness, of course,
depends on certain assumptions.

But to be realistic, one comes across more often, with rela-
tions such as

y = ifxl.xz,....xr} + €
where y is the variable to be predicted and 11,11“...1;' are the
other variables useful in prediction and f is some mathematical
function, involving some unknown parameters. ¢ is the "random ,fﬁf
error” which is the cumulative effect of other variables that may
not be known as they are very insignificant and are not included 4in
the relation.

Often, even the functional form f is also not known and one
needs to approximate it by a suitable polynomial or some such
function.

A linear model (statistical) is then a relation of the type

y = H*I'”'*Ip} + &
where f is linear in the unknown parameters and ¢ is a random vari-
ables. We make suitable assumptions about the distribution of ¢
such as € is a normal variable with mean zero and variance Uz: tha
different £'s are uncorrelated.

Such a linear model can then be used to predict vy from
XypeeeaXy . This prediction can then be used for planning or
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betterment of 1ife in general. To he able to do 8o, we nesd enti-
mates of the unknown parameters, An egtlmate has no meaning unlens

it i accompanied by some ides as to {te accuracy. The objectives
in linear statistical models are thus centersd around sat Imatinn of
unknown parameters and Lhe varlances and covarfances of these est{-
mates. Testing hypotheses about these parameters is slso a part

of this study,

3. SOME RESULTS ABOUT VECTORS AND HATRICES

Vector spaces and matrices are useful in developing the thesry
of linear models. We summarize below some important results which
will be needed in subsequent chapters.

(1) Linearly dependent and independent vectors.

Let LT ITREEE be m column vectors, each of n components
(we shall, hereafter, call such vectors n-vectors). 1f

Y= oex + CoMig + oo + € X, (3:1)
with at least one €y ¥ 0, ¥ 1s said to be linearly dependent on
X 3Xqy--0,X | otherwise y 15 linearly independent of LITRETE:

Ify= clil + ...+ cnfn implies that each ¢, = 0 {{ =1 ... .=}

¥ is linearly independent of LSNP TEETY S 1

The null vector D is always a dependent vector.

If the ?Eﬂtﬂrﬂ.ii-ﬂgr----ﬁu are mutually orthogonal that is

Eiij =0 (14 3}, (all £,%) ,
then XysXze---,% are linearly independent.

There can at most be n linearly independent n-vectors.

(2) 1If X12¥ys=-epX are certain n-vectors, the totality of all
vecters which are linearly dependent On X;sXyps.0,X 18 called a
vector space. The rank of such a vector space is the maximus nusber
of linearly independent vectors in this vector space,

(3) 1t ¥js¥540:0,% are linearly independent vectors, we can
always construct new vectors 11-12-----In which are linearly depen-

dent on ESEREETE such that

Eizi - 1 1411 =0 (149 (1.2)
(1, § = 1,2,...,m)
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b
- and mutually arthogonal. Thin can be
That 18, F]"' 'Fm are unlt and mutuaally ?
done by what 1is knowm as the Gram=5chmidt proceas of orthogonal {-
fa] ] L .
ration. First one constructs the vectars
= T
F
A
s ) o S
L R Z. z 1 *
—~]—1
i -
Z1%3 23
Z - E - e ) b _l:’_ L e
3 3 ELEI 272
m=1 =zi!x
T =% = F ::ﬂ il- {3.3}
o =1 2454

These vectors are mutually orthogonal. Then one normalizes them to

make them unit, by

e L] {i o I-:!“"'I'IIE:I' {3'&}

If 2 is < n and n is the number of components of each vector, we can
continue this process and obtain further unit and mutually orthogonal
vectors 21t Eﬂ+2“'+“5u‘ by taking any arbitrary uhuectnrnlzm*i,...‘
x which should be linearly independent nf-zl""‘ﬁh'

(4) Rank of a matrix

If A is an m x n matrix, its rank, dencted by r(A) or rank(A) is
the number of linearly independent row vectors, which is also the
same as the number of linearly independent column vectors. Hence

r{A) < Min(m,n). (3.5)

A matrix A of m rows, n columns and rank r can be converted by
what is known as the sweep-out method [see Rac (61)], to the matrix

r[Irl B]. (3.6)
I n-r
Bow consider the matrix
[l n=-r
Do (B )

r n=r

r (3.7

which is obtained from (3.6)., The rows of D are then orthogonal
to the rows of A. This is a method of constructing vectors artho-

gonal to a glven set of vectors, The m rows of A are n-vectors,
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But these m are linearly dependent, Only r of them are linearly
indepandent, We can thus abtain at most n=-r vectors orthogomal ta
the rows of A. Thege are glven by the rowvs of [,
It should bhe noted that
rank A + rank D = . {3.8)
D is called the "Deficlency” matrix correaponding to the rows of A.
A deficlency matrix for columns can also be eonstructed similarly.
(5) A square matrix A of order @ x m and rank m is a called a
full-rank matrix or a non-singular matrixz. The determinant of such
a matrix is noen-zero and the inverse of such 3 matrix, A_l exists.
The following results should be remembered.
rank (PG} < rank P or rank 0,
rank (PQ) = rank P, 1if O is non-singular,
rank (0P} = rank P, if O is non=singular.
If A is m x m and of rank r, then
|A] =det. A=0, 1f r <m
r = number of non-zero eigenvalues of A,

(6) The product of two partitioned matrices

o
#H

E| F |

e

[_I__—‘ [+ AE + BC u+m

CE + DG CF + W

provided all the products AE, BG,..., etc. in the result are
possible,

and

1z

(7) The trace of a matrix A is the sum of irs diagonal
elements and 1s denoted by trA. (A must be a Square matrix). It
is also equal to the sum of its eigenvalues,

Further

tr AB = tr BA (3.9)
and
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tr ABC = tr BCA = tr CAB |

that 18 A,B, C can bhe cyclically permuted under the trece cperatic
(8) The determinant of a partitioned matrix
A B
d_+_h
is
[l |p - ea™'s| , (3.11)
and also
I| | - 8p71¢) (3.12)

provided A, D are square and non-singular.

{9) The inverse of a partitioned matrix
[k
ClD
(a-80" 1)L | -a-s07lc)tep? | 1349

-n'-lcl:n-nn']'-:} -1 | o1, n'lc{n-au'lcj'lnn‘_lj

is

provided all the inverses and products in the result exist.
Alternatively, it is also éxpressible as

At 4 A lap-ca ey lea! | -4 1p(p-calpy?

{3.14)
= f (p-ca~lpy~1 -

~(p-ca”l8) ~Lea
(10) 1f qu'Eqr are pxq and qxr matrices of all elements
equal to unity,

E E = By -
Pq gqr 1 PE (3.15)
(11) A wvery 1mpnrtant result about the inverse of a matrix is
(r+P7 =1 - p(1+0oplg, (3.16)

provided PQ, QP both are possible.
Using this, one can get the following, often needed results,
=1 1 gg -1
I + = E
{ec . dﬂpp} E{I

pl 1P
-4 E (3
c P nft + pd) pp +17)
provided ¢ ¥ 0, ¢ + pd ¢ 0,
Similarly ] =1
- = A '
hrxgntoat o Wogwh .10
- LR Al
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where x,y are column vectors, &Fl exists and 1 +.1'ﬁ-¥3 ¢ 0.

(12) det|1 + Po| = det|T + qP|, (3.19)
and hence
lex +ag | w P Lie +pd) , (3.20)
P PP
provided ¢ # 0, ¢ + pd # 0,
Also
I +xy'| =]alL + y'a~te, (3.21)

if |a] # 0, 1 + I',fli ¥ 0.

{13) g% stands for the column wector

L]

x
L |

where F is a function (scalar) of Epaeeaa X and Ky aXgaeee X ATE

elements of x.

(14) —:-‘2 , where A 15 a matrix of elements Hij' and x is a
scaler, is the matrix of the elements daij 5
d d dx
— " - ] ¥
(15) d;‘:i x) '3'5'{1 a) =a. (3.22)

{lﬁﬁ-iiﬁz'ﬁg} =2 Ax, where A 1s a symmetric matrix. (3.23)

(17) If P is a matrix such that P2 = P, it is called an

idempotent matrix.
(18) If A is a square symmetric matrix of order n, the roots
of the equation
A =21 | =0,
in 3 are called the esigenvalues of A. If 11 is an eigenvalue of A,
the vector ii satisfying the equagion
(A - 1'11}51 -0,
is called an eigenvector of A corresponding to the eigenvalue J.l.

o {19) If all the elgenvalues of a matrix are positive, it is
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called a positive definite matrix and if they are non-negative, it
is called pesitive semidefinite.

(20} The eigenvalues of a symmetric idempotent matrix are
either 1 or 0. Further, for such a matrix, its rank and trace are
equal to the number of non-zero eigenvalues,

(21) If A is a symmetric positive semidefinite matrix (or
positive definite), it can be expressed as

Amdt e+, 4 LN (3.25)
where n is the order of A and -Ei (1 =1,,..,n) are unit, mutually
orthogonal eigenvectors of A corresponding to the eigenvalues Ai
(1 =1,...,m), tr of which are non-zero and n-r are zero, r being

the rank of A. Thus

I = ¢ B2 + ...+ 02" (3.26)
n =] -r-n
(3.25) is called the spectral decomposition of A. Also, then
gt S L e e (3.2
11 e il | -:'I.n —rn

if r = n, and
L I Y LI ALt (3.28)
for k > 0, any r.
(3.25) can also be expressed as
A = L diagh ,hy,.0, A LT, (3.29)

where L is the n x n matrix whose columns are i o PTIR
) L= =

4. VARIANCE-COVARIANCE MATRTX %
- ‘ 1

Let x be an n-vector of :andnm'#;;:i:ablts 11,12,“..%. Let
944 = variance of Xy
ﬁij = covariance between TLIT (1.9 = L, .uiom)
Then the n x n symmetric matrix L, with elements o 14 is called the
variance-covariance matrix of x and we denote this by
Vix) = L . (4.1)
By definition of variances and covariances, it is ebvious that
Vi(x) = E{(x-E(x)) (x - E(x))'}
= BE(x x") - B(x)E(x") , (4.2)
where E stands for expectation.

If we transform from x to new variables z by the linear trD
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lormation
Z=4Ax,
from (&.2), it follows that
V(Z) = E(Z - E(Z)) (2 - E(2))'} (4.3
= A L A",
Note that A need not be nxm. It could be m x n, where m 1s any
integer.,
The covariance mattix of two vectors, % and z 1s defined as
Cov(x,z) = E{(x-E(x))(z-E(z))'}). (4. 4)
nokte that
Cov(x,z) = {Cov(z,x)}'. (4.5)
One can readily zee that.
Cov(A x, B z) = A Cov (x,z)B'. (4.6)

7 IR :
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Chapter 2
THE GENERAL LINEAR MODEL
P
| il THE GENERAL LINEAR MODEL
"'a//
- The general linear model that we consider in this chapter 1is
assumed to be
y=Xa+c, {1.1)
whera
¥ b B IRLL b HEe e T .
1 - }'2 & I - le xzz S HIP ] E = cz {l-z)
x X o ses X )
¥n L_nl "n2 np_| e
L e i
¥ is the vector of n observations, B is the vector of parameters,
£ is the vector of random errors and X 1s the design matrix. Y
o 1

is observed and hence known, B is unknown and X is known. Both X
and B are fixed. We assume the c's to have the following prop-
erties

(a) Efg) = D (1.3)
() V() = 0’1,
that is By rCanerssl have the same but unknown variance ui and are
uncorrelated. Later we are going to assume that the ¢'s have a
normal distribution,
We will denote the columns of X by 3_1.352.“.,_15? and the rows
of X by E;:l]'l:','ﬂ" . 'E-I':n]l' so that
K= (k) akgueennX ] = [ReyyaXepy ooy 1" l.’l.ii}
O'IEII.' combination of the rows of X is thus for example, a row

13
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vector

1 -

1'- ] £l
. u15{1}+ "aZe2y A (n)

and a linear combination of the columns of ¥ 12 a coluss vi
- f + & . - 1 Te T = %t . %
! 1!.1 2—.1 + {T: [Eqi_l‘-‘l'l_!' -'1. 1“'_.
{
Pa
Our objective is to estimate (obtain both point eztimates and
1f poszibhl

L}

interval estimates) the unknown parameters rl,.‘.,ﬁp

or at least to estimate those linear combinations of these para-
meters, that can be estimated. We alse wish to estimate u:
Another objective is to test suitable statistical hypothesez about
E or at least functions of B.

Usuz ly n, the numbers of observations, is larger than p, the
number of unknown parameters,but we are not assuming thiz. The
rank of the matrix X is assumed to be r and obviously

r < Min(n,p). (1.7)

1f
r=p<mn, (1.8)

then the model (1.1} is said to be a "Full Rank Model", otherwise
it is described Aas a non=full rank model.

In order to estimate B, we need to determine a 5 vhir:h is a
function of y and other known quantities like X, such that E 13
"close" to B in some sense, In thar_ case, if we substitute E. for 3
in (1.1), ¥ will be "eclose" to .‘-I{H. The difference N

X - H.E; =& (1.9)
is called the vector of "residuals", while the difference

¥-X8 =k |
of the observations from the "model value" X8 is called the vector
of "errors", One method of choosing £ is to minimize the sum of
squares (5.5.) of the elements of e. This is the well known methad
of least squares, and we shall :I.nuest:l.gate the properties of ast:l.-
mates derived by this method. To obtain E using the method .:,.f Q
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least squares, dIi’I’rrentiate
e'e = {y - ]'.W} l'._}"'-:':ﬁ:' :

- y'y - 26'X'y + El':l.’ x* El- (1.10)
with respect to the elements of E and equate them to zero. {Hhile
simplifying e'e in (1.10), 1t should be noted that E X'y = y HEJ
Observe that
d%- (e'e) = 20"y + E{H‘x}é.

Equating this expression to zero, cancelling only the factor 2 [in
some particular situations, it may be possible to cancel any other
factors also, but it should not be done now to preserve some
important properties, as will be explained later] and transposing
the part containing known quantities like X,y to the left hand side,
wé get the equations

X'y = (X'X)8 . (1.11)
Theqe arectalled "Normal Equations". They play a very impdrtant and
uaeful_fgle in the theory of linear models. They contain a wealth
of information as we shall see later. The vector X'y will also be
denoted by q, with elements ql.qz,...,qp. These are known as tEe
left hand sides of *the normal equations and the elements of X'X8
are called the right hand sides of the normal equations. The matrix
X'X which is pxp will also be denoted by S and is a symmetric matrix,

whose rank is alsoc the rank of X, namely P. To see this, we observe

that if a vector a is orthogonal to the rows of X, then Xa = 0,
which implies X'Xa = 0, or o i1s a orthogonal to the rows of X'X.
Conversely if X'Xa = 0, then a'X'Xa = 0 or 'y =0 where y = Xa

the rows of X. Thus X'X and X have the same "daficien:y matri: v

but y'y is $i L R 12 and so ¥ or Xa = 0 or a is urthngnnnl to

and hence the same rank r. Also this shows that the vector Epaces
of the rows of X and of the rows of X'X are the same.

Can we solve the equations (1.11), which are apparently p
equations in p unknowns? According to the theory of linear equa-
tions, a necessary and sufficient condition for a solution to exist
is the “consistency" condition

* rink[x‘ltx'xj = rank [X'X] . (1.12)
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We shall show that (1.12) holda., Sinee addit fton of a vecbor connel
decreage the rank (it may not nevense)

Tﬂ“k[ﬁlﬁlt‘:.rl .‘“ rank (X'%), (1.1 1)

Livsarr U lusmm g

But eince the rvank of the product of two matvleea Is
equal to the rank of any one of them,

rﬂﬂklﬂ'ilﬁ*vl = rank X'[X]|¥] < rank X' = rank X'X. (1.14)
Putting (1.13) n;h (1.14) h1ﬂﬂﬂﬂbf* we see that (1.12) holds and
the qmrnalﬁrquutiuns are consistent and a solution exists, Let us

denote hy.E any particular solution of (1.11). Refore procecding
further with the theory of telationship between E and the peneral
solution of (1.11) and methods of finding out E1 we shall first
show that any % do¢s actually minimize the 5.5. of the residuals,
namely e'e. To see this, consider any other value 8, of B. Then
(i—xﬂ}{1—::&}-{_1uxﬂ+xﬂ—:m}{1-1:’:+:-:H—HHI

(y-XB) ' (y-XB) + (X(B-8,8' (y-X§) b
+ (y-XE) ' (X(B-Bo)} + (X(B-B) ) (X(8-By))
. = (y - KE}"LE - XB) + (B - Eﬂ'_l':-c*{;[ - XB),

+ (y - xﬂ}*x*fa - Bg) + (X(B - {m - B }}
= SSE 4 I:E -_.E.ﬂ}:hf‘ - X' IH}
, + X'y - X'X8)'(8-Bp) +m'm , (1.15)
where
SSE = (y - X8)' (y-X8), (1.16)

. 2 XE- 8.
But B satisfies (1.11) and m'm, which 1s the 5.5, of the elements
of the vector m, 1s non-negative and hence simplifying (1.15) we
get

(y - X8 '(y - XBy > SSE, (1.17)
which shows that the 5.5. of the residuals e & is actually minimized
by using any solution H of (1.11). The minimum' value will be
denoted by SSE as defined above and stands for "5.5., due to error"
or "error 5.5.", for reasons explained later in Seection 8,

To discuss more details of the solutions of the normal equa-
tions, we need to introduce the concept of a generalized inverse of

a matrix and some related ideas. This iz done first tn the next
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H};f;h GENERALTIZED THVERSE OF A MATRIX

Let A be any mxn matrix. Consider the system of linear
equations )

Ax = u , (2.1)
where x is the nxl vector of unknowns and u is any mxl vector such
that (2.1) is congistent, that is

tankA = rank {ELE} . (2.2)

finition I.
An nxm matrix A  is defined to be a generalized inverse of Che
mxn matrix A if for every vector u satisfying (2.2), ﬁhE is a

solution of the equations Ax = u in the unknowns Xx.

One method of obtaining A~ 1is therefore to take an algebraic

vector u with elements u yu_, assume (2.2) and try to solve

gk
(2.1). Though (2.1) appiars to be m equations in n unknowms,
actually they may be even fewer as some equatioms in (2.1} could be
sbtainable from others by linear combinations. Suppose they are
really only k < m equations. Then use any Il'Etuil:a'h-lm“, "consistent"”
additional n-k equations to supplement (2.1). Since Definitiom I

' needs only 'a' solution of Axeuy, it is immaterial what additional

equations we take. We now solve all these equations and get a

golution
11 12
xl a u1 + a uz *+ us + & um s
21 22 2m
%, = 8" uy + 2"y, t.ootau (2.3)
x = a"l + ;"1 : e +a u
n 1.I1 uz aEE ‘h’

or, which is the same as
x = [aijlg (2.4)
} where [nij] is the nxm matrix of the coefficients of the u's in
: ~ (2,3). Then this matrix will satisfy Definitionm I and will be
a generalized inverse (abbreviated as g-inverse hereafter) of A.

Use of (2.2) may be made if necessary.
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The squatione will ke
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x, + 1%z = "3

1 s

For conalstency, ons can Eagily aes thar L Emint b ru} arid u, PuEE
b li « Actually omly one of these three equations is uneful , the
n:htr- are derivable from (¢ and provide no additiomal useful fnfor-
matiom. %o let us take omly the firat, namaly 3xl + 13? " u, To
sclve this, as we have 2 unknownn, we need to take one mure equation.
Tt must be "suitable” gnd "cemsistent” with this. Por ecample,
liz, + 2z, = ﬁul won't be suitable, as it 1s only a multiple of
1:1 + 5:2 - 6. Also 3:1 + 533 - Eul won't do, as 1t 1s Incanein-
tent with 3& + Sz Uje We can take %, = 0 as our additional

I - e— -

Jmﬁmmlvmh + 5x, = Hys %, = 0, we get a solution
H-ml-}m:-}ﬂus

md Rence
ri &
T 0 4]
0 O 0
- -

is & generalized fnverse of A,

¥e could have taken Xy = u, 48 an Idd!t!Pﬂf; equation, and

tﬁul-alri.n;hl*l 5:: ."1' :,‘,-uz, we get a solution
1 %
771 -, 0,
Harer
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1 5
ln 1 0

{z also a generalized inverse of A, In fact we can obtain an

infinite number of generalized inverses as we can choose our
e

additional, suitable, consistent equation in a varlety of ways.

We now give another definition of a g-inverse of A.

-

\Jgfffniticn II.

Any mxm matrix A satisfying the relation AA A = A is defined

as a generalized inverse of the mon matrix A.

We shall show that the two definitions of A are equivalent.
Suppose definition IT holds. Then
AATA = AL (2.5)
50,

AA Ax = Ax . (2.6)

=k

But if Ax = u is a consistent system of equations, we can sub-
stitute u for Ax on both sides of (2.6) to get

AA uw=u,
showing that A u is a solution of Ax = u, for every vector u for
which Ax = u is consistent. This shows that Definition I holds.
Conversely if Definition I holds, take u to be the i-th column
vector of A (1 = 1,2,...,n), denoted by a,. Since

rank A = number of independent columns of A

= rank [A

the egquations

Ax=a (1= y SR,

_1 -
are obvioubly consistent and so by Definition I, A a, is a solution

¥ _&111

and hence
Ma, =8, (1=1,...,0) .

Putting all these n results together in matrix form as
M-[g-‘liﬁ.’;zp W lrln] - [!11'!_21 r+||=“].i

we obtain
AAA = A,
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ae ll"'"'in are columns of A. Thus Definition I1 £oll-we from

Definition I. There are various methods available In ths Iiterseurs
for obtaining a g-inverse of a matrix. However, for most of the
problems that arise in the applications of the theory of linear
models, the above method of solving the equations Ax = u with the
help of additional equations is easy and useful. Some octher methnds
are described briefly at the end of this chapter in Exercises snd
Complements and are also available i{n the 1ist of references, at
the end of the book.

We now define the nxn matrix ¥ given by

AA=H (2.7)
and establish some important properties associated with ir. Fire:
observe,

\Jé;:erty I. A =4 . (2.2)

This follows easily from (2.7) and definition IT of A .

\ Ffoperty II. L (2.9)
This also follows directly from (2.7) as
2

B = HH = AAA A= A A=H,
due to definition IT again.

\,Pépe:ty IITr. rank H = rank A = tz§ (2.10)
where tr H stands for trace of H, which is defined as the sus of
the diagonal elements of H and the operator trace is invariant for
cyclic permutations, that is

tr PO = tr QP, and (2.11)

tr PQE = tr QRF = tr RPQ . (2.12)
To prove (2.10), since rank of a product of two matrices is less
than or equal to the rank of any one of them, and since from (2.8),
A= AH we have

rank A < rank H. (2.13)
But from (2.7), using the same result about ranks
rank H < rank A. (2.14)

So from (2.13) and (2.14)
rank H = rank A.
It 1s a well-known result that the rank of an idempotent matrix is
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equal ta its trace. Since, from (2.9), H is idempotent, its rank
equals its trace and this proves (2.10),
some authors call a matrix P idempotent only if P is symmetric

o |

and P° = P, We have not included the condition of sysmetry in the

definition of {dempotency. The matriz H may not be symmetric as A

may not be. Even then it can be ghown that tr P = rank P, if plap

hecause P can be expressed 35.
. ‘ =1
L diag r'.l,,..,'.u.'.lL .

where diag. stands for a diagonal matrixz with diagonal elements

specified in the adjoining parentheses. Then since Fz = P, it
follows that :'-i - -ii (i{i=1,...,n) 1.e. each 151 = 1 or 0 and so

tr P = tr{L Aiag Hl,...,&n]L'I}

=
- ;r{L Ldiag fal....,ﬁn‘.njh;.r (2.12)

=L &
1 i
= pumber of non-zero &'s
and rank P = rank diag l.'ﬁl.”.,-ﬁn}, as sultiplication by a non-
singular matrix does not alter the rank. Thus rank P is the number
of non-zero 6's. This proves tr P = rank P if E‘I = P.

. We now prove that the general solution of the system of
homogeneous equations

Ax = 0 (2.15)
can be expressed as

%= (I-H)z , (2.16)
where z is any arbitrary vector.

Froof: Observe that
A(I-H) = A - AH
- 0, by (2.8). ; (2.17)
Hence each of the n columns ]11 ’!2'“"l—=n of I-H are orthogonal to
the rows of A, But
l'I-H}E-I-H-»Hd-H
=1 -H, due to (2.9) (2.18)
and so, rank (I - H) = er (I - H)
= tr I-trH
=np-r, {2.19)

2
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where © = rank A = rank 0 (aee 2.10). oOnly n - r of the column
va:tﬂrﬂ,hlii-..hﬁ are linearly indepondent, which we shall take to
be bll“'ih“_r without loas of gonerality, Sinee A In an mxn matrix
of rank r, its rows are n-vectors and therefore, we can find at

most m = r linearly independent vectors orthopenal te them. hyseesns
Lln_r is one such met. If there ia any other vector orthaogonal to
the rows of A, it must be a linear combination of ﬁl""‘?H—r'

From (2.15), x is orthogonal to the rows of A and so any wvecter X

satisfying (2.15) must be a linear combination of hl.....h « But

-1
this is alse equivalent to saying that x will be a linear combina-
tion of h ,...,h_ because Ber41++++sh are linear combinations of
h

LR "b'rl.-r' Hence x must be of the form

X=xh *+ s004+2h
= n-n

1-1
= [h "'*'hnli- .
= (I -H) =z, (2.20)

for some z = [:1....,:“1'. Conversely, 1f (2.20) helds,
Ax = A(I - H)z
= (A - AH)z
= 0 due to (2.8).
This shows that the general solution of (2.15) is given by (2.16).
We now extend this result to obtain the general solution of the
non-homogeneous consistent ‘equations
Ax = n
of (2.1). 1If A" is any generalized inverse of A, by Definition I
of A, n'E, is a particular solution of (2.1) and therefore
Alx —Au) =u-u
=0,
vhich is a system of homogeneous equations in x - hig. Therefore,
by (2.16), its general solution is given by
x - ATu= (I - e,
where from it follows that the general solution of (2.1) is
XAyt (1= H)z (2.21)

v)./ SOLUTION OF THE NORMAL EQUATTONS

We are now in a position to apply the results of Section 2 to
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b mevrmal eapual lanmn (1,1 1),

X'y = (X'X)H, (3.1)
A particular solutfon of these equationa will be

o 5 X'y or :;'_p: Al ol | (3.2)
whore % in any g=Inverae of & = (X"X). The general solution of

(3,1} will be denoted by I;-'- glven by

Bw @+ (1 -Mz, (3.9
where

H=585 {3.4)
which 11. n pxp matrlx and possesses the propertlies 4

SN w i, S5 =5, rank H = tr H = rank § = rank X = ¢, (3.5)

due to (2.8) = (2,10}, In Section 2, the matrix A was any mn
matrix but the matrix § of the normal equations is symmetric (being
X'%) and hence we can derive a few more important results about 5

and H here. These will be required again and again in the future.

‘/.qéu.tt 1. If 5 1s a g-inverse of X'X = 5, its transpose
(s7)" is alsoc a g-invsere. . S.
“3

Proof: By Definition II

55 § = 5.
Taking transpose of both sides and noting 5° = 5 and using
pefinition II again, it follows that (57)' is also a g-inverse of

5.
I v«ﬁam 2. % = ¥H. (3.7

Proof: From (3.5), SH = 5. Therefore
0= (I - H)'"(5-5H)
= (1 - H)' (X'"X-X"¥H)
= (I = H)'"(X"(X=23))

= (X-¥H)'(X-XH). (3.8)
Equating the i-th diagonal elements (1 = 1,,..,n) on both sides of
(3.8), we get )

0 = sum of squares of the elements in the i-th row of (X-XH)',
for every 1. This proves that every element of X=¥H 1is null,
proving (3.7).
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= e fris
\}éﬂit 1. 1If SH. and 5!!! it.:.:ldl- two g-inversca of xrﬁ - {:
i b T | (3,.09)
ISHH - HShR .
Proof: Let H = 88 and H =55 . Thim ,
a a4 a b h h
X=XH = %5~ X'X
a B
1 | = Ty
and also X be HEhI X

From (3.7},

or
XS_X'X = XS X'X.
Hence
0= (XS X'X - XS, X'X) (XS - X))
= (XS, X' - XS X')(XS X' - XS X')'.
As in the proof of Result 2, we now equate diagonal elements on
both sgges_tn conclude (3.9).
As a corollary of this result,
llary. XS X' = X(s™)'x'.
Or that XS X' is symmetric, whether §  is symmetric or not.

due to Result 1, we obtain
(3.10)

ult 4. A solution of the normal equations (3.1) is unique
if and only if rank X = rank X'X = p,

This follows from the fact that the general solution (3.3)
will not contain the arbitrary veetor z and there will be a unique
solution of (3.1) if and only if I - H = 0, that is

I =55,

This will be so, only 1if 5 is non-singular and has a regular

inverse 5-l+ Hence the result.

In general, therefore, for a non-full rank model, there will be

an infinite number of solutions of (3.1} for g. However, 1if we do

not focus on all the elements of E but only a linear function of

them, say

M= M8 + ... 4 AL (3.11)
vhere

At = [11,.,.,i Lt - (3.12)

then for diffarent solutions Efl}'5[21'+"' aof (3,1), the expressions
general salutiun of (3.1), we will then have

.1-|| B L ]| _{1] - 1.{1 H}_E(i:lj f = lizii-l-t L (3.13}
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This shows that 1f and only £f A'(1 - H) = 0, (3,13} will not
involve the arbitrary F‘-”}'!l nnd j--'rt“} will all hava the aame valus.
We, therefore Rl tho ‘ru]'lr]q'"n thearem.,
‘ 'l T, e

b NCOEOR i A necessary and sulficient condition for the
cxprossion 1.":‘1._, wvhere # 18 any solution of the normal equations

(1.1} toe have a 1|I:I!|:i1|_rl value is

At = A'R, (3.14})
where # = 5_!1+ H= 5_5.‘ and §° is a g=Inverse of 5.
4. ESTIMABILITY OF A LINEAR PARAMETRIC FUNCTION

If £ is a solution of the normal equations (1.11), there are
two difficulties that arise in usingli for estimating £. The first
is that E is not unique. There could be several solutions to
(1.11) in general. The second is that

E{'é} = E(5 X'y)

= SX'XB .

= HR , (4.1)
which is not equal to B in general. Thua.iria not unbiased for B,
in general. We, therefore, abandon the idea of estimating all the
eélements of B and see whether we can estimate at least some linear
functions of them. For that we introduce the following definition
of estimability, which is obviously intuitively satisfactory.

xfgﬂgflnitinn of Estimability of a linear parametric function:
A linear parametric function A'8 where

-l_l = [..'l. (4.2)

ll‘F'iAp]l
is said to be estimable 1if there exists at least one linear function

of observations E'I- where

u' - ful,.”,un], (4.3)

such that E{u'y) is identically equal to 'S,
By "identically equal to A'8", we mean equal to 1'8, whatever

may be the value of B, We denote this by )

E(u'y) = 18,
and then by (1.1), substituting for E(y), we have

u'XE = A'S, (4.4)
It then follows that
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E‘_I_-Il L rll'.'l_r

[We can successively take £ to he (1,0 A1 0,0, e O], h

-=+10,0,...,0,11", to shov that each element of u'¥ is the
corresponding elements of 1' and hence u'X = 1'1.

This means (see 1.5%) i' 18 a Hnu; combination of the rows of
K. Conversely, if u'y = Y,

Ela'y) = u'xs =1's
and by the definition of estimability 1'8 is estimable. We thus
have the following theores.

-
em 2. A necessary and sufficient condition for a linear

parametric function A'E for the model (1.1) to be estimable is that
1" is a linear combdination of the rew vectors of the matrix X.

Thus tor example, X"XE, which are nothing but the right hand
eides of the normal equations (1.11) with the circumflex in é
removed, are all estimable,

Since the row vectors of X are X' ],...,E:n} (see 1.4), this

{1
] T
theorem also means that the parametric functions 1{1}13_, —{z}ﬁ'“"

—I-'E'u}& and their linear combinations only are estimable.
1f (4.5), which is a necessary and sufficient condition of
estimability of 1'8 holds, it follows that
AN = a'im
=u'X, by (3.7)
- 1" , by (4.5)
end conversely, 1f 1'H = A", then
' = 3'578
= i
=)' X'X

= u'X, with u' = 35”1

%"

That is, /' 18 a linear combination of the rows of X, Hence wg have
an alternative necessary and sufficient condition for estimabilicy
of i'6, which 1s restated in the following theorem.

Thecrem 3. A necessary and sufficient condition of estimabilicy
of a parsmetric function A'E for the model (1.1) ia

At = "W, (4.6)
where H = §°5 and § = X'X,



Fu

Cpectlonm %. The Gauss-Markofl Theoarem LT

as an illustration of the use of this condition, let us check
whether the p parametric functions X'XB are estimable. Observe that
these functions oceur in the right hand side of the normal equat ions
{1.11), except for the only difference that f has a clrcumflex on
it there. Since

(X"5)H = X'X,  (as ¥H = X due to (3.7)) (4.7}
every row of X'X satisfies the necessary and sufficient conditiom
(4.6} of theorem 3 and hence X'X8 are all estimable.

The definition of estimability guarantees only the existence
of at least one unbiased estimate of an dstimable parametric
function. It does not explicitly give a method of obtaining i,
nor does it say that it is the "best" estimate. By "best" estimate
of 1'8, we mean a linear function of observations that is unbiased
for A'B and has the smallest variance among all such unbiased
linear estimates. We define this formally below:

DEFINITION OF A BLUE.

A linear function b'y of the observatioms y in the model {i+1}
ig said to be the Best Linear Unbiased Estimate (BLUE) of a para-
metric function A'8, if it is unblased for A'E and its variance is
the smallest among all linear unbiased estimates of A'B.

In the next section, we shall deal with the problem of
obtaining the BLUE of an estimable parametric function A'S.

5. THE GAUSS-MARKOFF THEOREM

The following theorem, which is known as the Gauss-Markoff
theorem is extremely important in the theory of the general linear
model, because it provides an easy method of obtaining the BLUE of
any estimable parametric function A'E, in the model {1.1).

Theorem 4. (The Gauss-Markoff Theorem),

For the model, y = X8 + ¢, E(g) = 0, V(g) = uzl. vhere y is
observed, X is known and E.uz are unknown, the Best Linear Unbiased
Estimate (BLUE) of an estimable linear parametric function A'S
{where A 1is known) 1is jfé, E being any solution of the normal equa-
tions X'y = x*;ﬁ, which are obtained by minimizing the quantity

(y-X8) " (y-X8)

e
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with respect to the unknown veetor B.
Proof': First observe that l‘ﬁ is unbiased for 1'E and is thus
eligible for being BLUE.
E(i'é} = E(A'S X"y}, (as é = S X'y, any solution of (1.11))
= j._';"x*xg -
= A'sTSE
- A'HB
= A'B (as A'H = A", due to estimability of A'B.) (5.1)
See [4,B)
It remzins to prove now that the variance of E'E iz not larger than
that of any other unbiased estimate of A'B. Let u'y be any other
unbiased estimate of A'"8., Then
E(u'y) = u'X8 z '8,
identically in £, which implies
u'X = A",

(5.2}

Observe that

lmr

u'y = (u'y - A'8) + A"
and therefore
V(u'y) = vf_g'i-_&'_éj + v{yﬁ} + zcnvtﬂ'i-i'ﬁ,yﬁ} 4 (5.3)
We will now show that the last term in (5.3) is zero.
Cov(u'y-1'8,1'8)
= Cov(u'y - 1'S“I’I,£'E-1{'1]
= Cov{u'-2's"X")y, (A'S7X")y}
= (u'" = A'STE V() (A'STX")!
= (u" - A'STX")X(57) "2 o®
(' - A'STX')X(ST) A o
= (u'X = A'STRX)(ST) A o’
(A" =2"0XET) A o, due to (5.2)
-0 (5.4)

L.

as A" = 1'H, this being the necessary and sufficient condition of
estimability of A'B. Substituting (5.4) in (5.3) and, since the
variance of a variable is non-negative, we obtain

-~ V(u'y) > V('B). (5.5)
This preves the Gauss-Markoff Theorem,
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Ine ident 1y, obuorve from (5.3 that the agual te sign In (5.5%)
holds, 10 amd only A0

Viu'y - A‘ﬂj -0 . {5%.6)
But,

E(u'y - A'ﬁ} = A'8B -A'B =D, (%.7)
Thus if the cquality sign in (5.5) holds, the difference H{I - i'é
has both mean and variance equal to zero, which implies that u'y
and l'i are both identical, with probability one. In other words,
if A'8 is estimable, iﬁi is its BLUE and if any other unblased
estimate of A8 has the same varlance na.iﬂé, it cannot be different
frnm.l'é. We, therefore, conclude that the BLUE of an estimable
parametric function is unique. .

The CGauss-Markoff theorem thus provides a very convenient
method of obtaining the BLUE of an estimable parametric funmction
'8, Obtain any solution E of the normal equatiens (1.11) and sub-
stitute ﬂ for E in the parametric function to get its BLUE.

Suppose Ef11 and B(E} are two different solutions of the normal
equations (1.11). If they are substituted in an estimable para-
metric function A'E, apparently it looks as if we have two different
BLUES, namely 5]5{1} and ilé{i}' But it is not so. They are the
same, Since the BLUE is unique, as we proved earlier, they sust be
the same. But this can be seen alteratively alse from theorem 1,
which says that i}ﬁ_lﬂ unique, for golution é_ﬂf the normal equa-
tions, if and only if any A' = A'H and this is so because 1'E is
estimable and A' = M 1is a necessary and sufficient condition of
estimability of A'E by theorem 3. The condition of uniqueness of
A'f and of estimability are the same,

The reader should be warned, however, that if 1'8 is not
estimable, substituting two different golutions may result in two

different expressions.
6. VARIANCES AND COVARIANCES OF BLUES

Since the variance-covariance matrix of y is uzl. it follows
that !

V{El - v{s'x'I)
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- 57XK(s™) 02
- §78(57) 0" . (6.1)
It should be notlced here that $575 = S by definition of 5 hut
that does not mean 5 S5 = § and also (5 }' is not necessarily 5
Hence (6.1) does not, in general, simplify further and in general.
V(B) # STo%, (6.2)
Now, 1f A'8 is an estimable parametric function, A'S is its BLUE

and

VOL'B) = A'W(E)A

= A'STS(S7)'Ae” (6.3)
- jfs“?'i.ﬂz. as 575 = H
= A'ST) o2, (6.4)

as \'H = A', due to F_:atimabilit}r of A'B.

We would have got the correct result (6.4), even if we have
erronecusly taken v(é; = E-uz. This shows that S_nz acts as the
variance-covariance matrix uf_é, if and only if we use it for
finding the variance of the BLUE of an estimable function. We will
employ this fact to avoild some algebra in future while finding
variances of BLUES. If the model is a full rank mdel obvicusly
] lﬂz is the correct variance-covariance matrix of B‘

If in (6.3), we write 5 8 = H, we find

V(A'E) = A'H(ST)'A o
= A'(sT)"A uz, as A'H = 1", (6.5)
From (6.4) and (6.5) we obtain
V(A'B) = A'8TA of = A'(sT)") 6.6)

If we consider two BLUES, say l(l}ﬂ and 1{233 of two estimable

parametric functions A(HE and J'r:z} » thelir covariance is given by

Cov(Aty)Brdiny8) = —{1}””—{211£

2
Iljs s(s” ]'lgg} (6.7)
_ '
= AfgyS H'-’-‘.{E.‘Jﬂz‘ as 55 =H, A,MH
T
LIS L R VAL Vol (6.8)

showing again that § ¢° acts as the variance-covariance matrix of B.

Also, writing 55 = H in (6.7), the covariance is also
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: : : =
.uv:ll1\h,1{:1ﬂ1 - lf11ﬂ{h ]t[?lﬂ
- AL (8T 2 6.9
1'{11-{' {}_{”n (6.9)
alwwring that
¥ -\.;_ - L] - |
Xeny® Ay ™ Ay Vidggys =Ll
1{f we consider m estimable parametric funntinnn.lElrg (i=1,2,...,m),
and dencte by A, the mateix
e
—{1)
'||1
h = —{2)| (6.11)
-.'H.'-II" . r
s
Limd)
all the m parametric functions will be expressible together as AB and
MH o= A, (6.12)
AL AL . H = A3 the condition of estimability.
as each L satisflesl_{i} 21 ¥y
The variance-covariance matrix of AB, the BLUE of AB is therefore,
VOAR) = ASTA'G®  or  A(ST)'Ad?, (6.13)

where we have used the fact that E-az acts as the variance-
covariance matrix of EJ while dealing with BLUES. If the m
parametric functions ﬂﬁ_hre linearly independent, that is if
rank A= m , : (6.14)
then we will show now that the variance-covariance matrix AS A'o
is nonsingular.
Since the rank of the product of two matrices is less than or
equal to the rank of any one of them and since, by (6.12),
A= fH = AS7S = (ASTX')X,
it follows that
m = rank A < rank AS X' < rank A = m, (6.15)
Hence,
rank AS X' = m
and, as rank of PP' is the same as the rank of P (see the discussion
following (1.11)),
m = rank AS X' = rank (ASTX')(ASTX')'
- rank ASTXX(ST)'A'
= rank AS S(57}'A'
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= rank AS H'A", as 5 8 = H
= rank .'lﬁ-l'l." as AH = A, ':'ﬁ'.]F:-::I
Thus AS A", which 1s an mxm matrix, is non-singular.

7. ESTIMATION SPACE

If A'8 is estimable, its BLUE is i'é. which can be written as
AE = A'sTXYy
-t'g,
where E. - E'S- and K'g_is already defined in sectien 1 as the
vector g with elements ql'qz""’qp' The BLUE A'E 1s thus a linear
combination of the "Left Hand Sides"q,,q9,,...,q of the normal
equations (1.11). Conversely, if we consider a linear combination

(7.1)

L'qg = Lay + e+ R.Fq
of the left hand sides a9y of the normal equations, it is the BLUE of
its expected value, because
E(2'q) = E(L'X"y)
= 4'X"X8 (7.2)
and by the Gauss-Markoff Theorem, the BLUE of L'X'XE is
vrn - ey
= L'q , {as H‘ﬁé_- x'g_du& te (1.11)).
[Obviocusly, L'X'XE is estimable, because the condition of estim-
abilicy, '
L'X'XH = R'X'X
is satisfied because of (3.7)]. So we have the following theorem,
Theorem 5. For the model (1.1}, the BLUE of every estimable
parametric function f{s a linear combination of the left hand sides
Ifi = q of the normal equations and conversely, any linear combina-

tion of the left hand sides q of the normal equations is the BLUE

of its expected value.

As a corollary of this theorem, we state the following result.

Corollary 1. A necessary and sufficient condition for a linear

parametric function A'E to be estimable is that 1' 15 a linear
combination of the rowe of X'X.

The proof follows from the fact that the rows of X and the rows
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il NN mpan Ehe pame yocbor apaes, a resolt proved In sectlion L.
e (ollowing Lheorem in obvious but we atate L[t for
|.:--|-|'||"1'||"I‘i.l
Theorem 6, The BLUE of any linear combinations of eatimable
parametrie Tunctions I8 the same linear combination of thelr BLUE's.

In other words, 1if 1&1} {4 = 1,2, ..,m) are all estimable, the
RLUE of

L] L]
LT PP T s MY (7.3
L=
- W - -‘.
S : hllfiiﬁ + kyh {E}H + + u__{ }H (7.4)

The proef follows from the fact that L' = A'H as each &:fﬂ satisfies

lh] - i{'i]“ and by the Gauss=-Markoff Theorem, 1'B is the BLUE of

L"B.

Theorem 7. 1f every BLUE is expressed in terms of the observa-
tions y as a'y, the coefficient vector a is a linear combination of
the columns of X and conversely every linear function a'y of the
abservations such that the coefficient vector a is a linear combina-

tion of the columns of X, Is the BLUE of its expected wvalue.

Proof. If A'E 1s estimable, its BLUE is
AE = 2SRy,
-a'y, (7.5)
vhere
a = X(5)')
= XL , (with & = ($7)'3) (7.6)
showing (see (1.6)) that a is,a linear combination of the columns
of X. Conversely if a = Xi,
E(a'y) = a'xg
= L'X'XB (7.7)
and the BLUE of L'X'XRE {s by the Causs-Markoff Theorem,
L'X'XE = 1'X'y  (due to (1.11))
=a'y (asa=Xt)
[Strictly speaking we must check the estimability of L'X'XB before
applying the Gauss-Markoff theorem, but as a'y is a lil'lﬂ'r_rlunl:t.'lﬂ-n
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such that its expectod vianluo Un £'X"Xf0 by defioit lon of eat im
ability, 1t 1is estimable, )

We thus see that the ool T lelont voctora of all BLUE s are
linear combinations of column of X and converaely. The voctor
space spanned by the columns of X In thorefore callod the "Eat Ima-

tion 5["“"“"“' Since the rank of X {1 It {a obhvlous that, thers

can at most be r 111“'H1'1"|-' |-1'||-|-1‘|'ll'lllh'|i|! el Imalle Dunet lons and E_r_.'_r_l:.r:.

s

=

B. ERROR SPACE
Definition: A linear function of the observations s anid ta
belong to the error space {f and only if its expected value is
identically equal to zero, irrespective of the value of B, in the
model (1.1).
Thus 4f b'y belongs to the ervor space,
E(b'y) = b'X8 = 0,
and hence
B'X = 0, or X'b = q ., (8.1)
that is b is orthogonal to the columns of X, Conversely if (8.1)
holds,
E(b'y) = b'XE = 0,
and b'y belongs to the error space. We have therefore,

Theorem 8. A linear function of observations belongs to the
error space if and only if its coefficient vector is orthogonal tog
the columns of X.

If E%l}iigiz}I*"*'h;x belong to thelgr:ur space,

Ilk{’i} - ﬂ'.. (i - 1.:,-1!|k] {3.1}
and hence

1*{:12{1] + ...+ EhE[R]} =0, (8.3)
80 that the linear combination

”1‘95111? + ee * tkihEk]I} (B.4)

also belongs to the error space. Hence the name “"space".

Theorem %. The coefficient vector of any BLUE (when expressed
in terms of the observations) is orthogonal to the coefficient vector
of any linear function of the observations belonging to the error

space.



e preel of this theovem in obvlous (rom the Cact IF Ef}
selones Te the erver space, b s orthogonal to the columns of X and
s thecrem T, the coefficlent vector of any BLUE s a linear com-
Sgval Lo ool the columns of X,

Thus any vector in the est imation apace l1s ﬂfthﬁﬂﬂﬂﬂl to any
vecter An the erver 2pace and so we say that the error space Is
srthogonal te the eatimation space. Since the estimation space
generated by colimns of X has rank r, and since we can find at
megt n-t Levery columns of X % an n-component vector) linearly
{ndependent voctors orthogonal to columns of X, the rank of the
ETTOT Space 18 N-T.

Az an example of a linear function belonging to the error
space, consider the difference

u'y - A'8 (8.5)
of anv unbiased estimate of A'E and its BLUE, i‘é This difference
vas considerad in (5.3) while proving the Gauss-Markoff theorem.
Since both u'y and l‘é have the same expected value, the difference
has expected value equal to zero and it belongs to the error space.

Another example of functions belonging to the error space is

v - %8 . (8.6)

This follows from,

E(y-X8) = X8 - E(XS'X'y)
= X8 - XS"X'X8
= X§ - XS"S8
= X8 - XHB
= X8 - X8 (due ro (3.7))

=0 . (8.7)

cheorem 10. The covariance betveen any linear function
belonging to the error space and any BLUE is rero.

This is a consequence of theorem 9. If b'y belongs to the
error space and i"i {s the BLUE of an estimable function A'B,
Cov(b'y,)'B) = Cov(b'y,A'S"X'y)
- k'{_{'ﬁ'!']luz as V(y) =c’1

- b X(s)A ot
i et (8.8)
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What role r]r_m--i A ['Jil'l"'T.ll'..l:I'I I‘r'.‘]"_lrl?ljfli-': tn the error G pan e pl..-_ljl"!'
T hdi belongs te the error space and If b {5 normalized to have

h'b = 1, we have

E(b'y) = 0
and therefore,

E(b'Y)” = v(b'y) = b'bo? = o2 (8.9)
Thus {EfI}? provides an unbiased estimator of =°. Since the rank
of the error space is n-r, as already observed, we can find at most

n-r funections

] ¥ ]
LISPLARLICTS SEL. YN (640
belonging to the error space, such thar
N LI binbey =0 (14 1) L
14 = 1,2, .0 nek,
Let Bl be the (n-r)xn matrix defined by
hl
B, = —(1) (8.12)
.I
Efn—r}
Then, due to (8.11)
le = 0, and BB = L (8.13)
or that B is a semi-orthogonal matrix. Observe that
-|.- 2 1 ’1- L]
(Brymd™ + oo 4+ {-El:n-r}‘t} | {El:u;} {AIF]
= I}Biﬂlx_, (8.14)

and this is the sum of squares (5.5.) of 4 ‘complete set of n-r
unit, mutually orthogonal (that is, satisfying (8,11)) linear
functions belonging te the error space. This is why we call 1t SSE
or Error 5.5. By (8.9), .
E(y'B)B,y) = (n-r)o’. (8.15)
Thus by pooling together all the linearly independent functions
belonging to the error sSpace, we can obtain the estimate
SSEf(n~r) = ¥'B B, y/(n-r) (8.186)
of uz. In practice, however this task 1is made much simpler and {t
is not necessary to find the individual b

add because SSE can also be expressed as

Eijz_anﬂ Square them and
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S55E = {_'r_'—l":_-"-_]”'l'i-'a"'-ﬂi , (8.17)
where B is any solution of the normal equations (1.11). To prove
the equivalence of (B,16) and (B8.17), we complete the semi-ortho-

gonal matrix B by adjoining r more unit, mutually orthogonal rows

i |
and forming the n X n orthogonal matrix,

R s (8.18)

P L

Pue to the orthogonality of B, rows of B2 are orthogonal to those

of EI and so
Blﬂi =0 . {8.19)
From (8.13), B.X = 0 or vows of B, are orthogonal to columns of X.

1 1
Also rows of HE are orthogonal to rows of B, . But there can't be

more than n-r linearly independent vectors orthogonal to the r rows

of Bl and =0 rows of BI must he linear combinations of columns of

X or that

l!2 = CX' , (8.20)

for some (n-r) x n matrix C. Therefore,
B,XB = CX'XSB
= CX'y (as B satisfies (1.11))

= Bgi (due to (B.20)). (8.21)
Also, as B is orthogonal, . s
1
- [ - L] L TR L] A
I = B'B “‘1'32] Bz}- BiBy + BJB, . (8.22)

Finally, therefore, using (B.22),
(y-X8) ' (y-X8) = (y-X8)'(BiB, + BiB.)(y-X8)
(y-Xg) "BiB, (y-XB)
+ (y - XB)BSB, (y-X8)
(B,y - B,X8)"(B,y-B, X8)
+ (Byy - B,XE)'(B,y - B XA)
(B y) " (B, ¥) -,;]ninlx_, (8.23)

‘as B,X = 0 (see 8.13) and B,y = B.XB (see 8.21). The error 5.5, or

SSE is thus the minimum value of
(y-XB) "(y-X8) , (8.24)

with respect to B, and as seen in (1.15), occurs for any B satisfying
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(1.11). Another convenient form of S5F [«

SSE = (y - hﬂ} (y - HH)

=y'y - Eﬁ X'y 4 F'H \H
- _\:1 = ﬁ_*!‘-’.r}‘ ; due to (1.1

no, * - ¥
= i vy - Lﬂlq1 Byl 4 aas ﬂ“qp} (8.25)

This can be described as the $.5. of all the obssrvations minua the
sum of products of the left hand sides ql"“'"p of n{::rnml equatfonn
multiplied by the corresponding solutions Hj, HE.“.,H of the
normal equations (1.11). [|:[i corresponds to #, because the 1~th
equation was derived by differentiating with reapect to B, 1. (n=r)
are called the degrees of freedom (d.f.) of SSE and the EEtlﬂHtE
SSE/(n-1) of ﬂI is denoted by ﬁz. uz is also called the Error Mean
Square, abbreviated as EMS.
The gquantity
B'q = Byay + .on + qup (8.26)
occurring in (8.25) is called the Regression 5.5., abbreviated as
S5R or sometime as ESH{EI,,...E ) or SS5R(B), the B in paranthesis
specifying the unknown parameters in the model under consideration.
To find its expected value, we use {B.25) and obtain
E(SSR) = B I y2 - E(ssE)
1
- E“’”ﬂ + [Er 17} = (a-r)o?

= m:rz + E{i']E{I_}I-{n-r}r:E
= ro’ + B'X'XE . (8.27)

We have therefore the following table, known as the analysis of
variance table,

Table 2.1
Source d.f. 5.8, E(M.5, = i'?' )
Regression r _E'ﬂ ot +%,- B'X'Xp
Error n-r ¥'y - E’q' ol - -
Total n 1'1 -




' aectlom 9, Spectral Decomposition of the Matrix 5 19

The |1|."'F‘:'|'1'|H’: =1 [Tr'l'-ﬂl'iﬂl of S5R are r 11["1"'ﬂIJHE !1 - .:':'I' hE'I-H ﬂnI::r r
linearly independent elements in 4it, as rank X = r, This will be
made clearer later again in the next chapter.

Mote that

E{Regression M.5.) or E(E%E} > E(EMS)

and the equality sign occurs only if

B'X'¥8 = 0 ,
or, which is the same as
| Xf = 0. (B.28)

In that case both RMS (Regression M.5.) and EMS estimate the same

: F
quantity g .
%. SPECTRAL DECOMPOSITION OF THE MATRIX S

Let £ "'Er be the non-zero eigenvalues of the matrix 5

|
1*°2
and let g ,g.» "E'P be a complete set of unit and mutually ortho-
gonal eigenvectors of 5, with By corresponding to Ei [ T PR,

and Eoyprt By to the zero eigenvalues. Then 5 can be expressed

as
! ! " 9.1
S=EiEE" Tkt t LB )
and since the g's are unit and orthogonal,
= " L I R s (9.2}
Ip 5151+.,+EE £ B
* (9.1} is the spectral decomposition of the matrix S. Define
2 X .3 ' 9.3
E-ﬁﬁlﬁi+"++ BB ( }
It can be verified that § defined by (9.3) satisfies
S8 8=5 (9.4)

and 5 is thus a g-inverse of S. Hence

H-s'5-315i+...+5r31',

=1, " EppBra T vt T Bplp (9.5)
due to (9.2). Consider now the parameter functions, .liEiH--E;.E'
They are estimable, because, from (9.5)

gIH = gl os gE, = 0 (der4l,..p) (17,00, (9.6)
and the condition of estimability is satisfied. The BLUE of g8 1s



an
Chapter 2 The General Linear Mode]

BYE " giSTg |
] l{.l LS + _]-,_, Ly H
By £, &y 7 oee F_Erke)d

L
1
- ?]— Eiﬂ « (L =1....,1). (8.7)
Its Varlance is, on account of (6.4),
- i E 'I
Vgy8) = gisg 0",
o> |
- — ; (9.8) |
i
using (9.3). Similarly, the covariance are given by |
Cov I_’_Eig.gfﬂ} = E‘is_g_jfr2
=0 L =125 (9.9)
2gain due to (9.3) and the orthogonality of the Eg's.
However, if we consider the parameter functions EEE with
- b 8L 1D r+2,...,p where the £'s correspond to the zero eigen— |
values of s, we find from (9.5) 54
.E_;_H =0, (1= g o EPRVPREREY, . | (9.10)
and the condition of estimability is not satisfied, ;;.H with |
i=r+l,...,p are thus non-estimable. 1

I1f we write i

'Ei — [;1"-:&“ " ’.E:] (9-11}
and
ﬂi - {h_'_l:l- .. 'Epl' {9’.1?] ﬁ

we find that G{E is estimable, its BLUE is, from (9.7)

1 1
dilgf?.l i E o T}Glﬂ' :9‘-1 3}
i z 2 1 i
and its variance-covariance matrix is o :Ilagl:—[— N —E—]._
1 r

The parametric functions .E.iﬂ ({ = 1,...,r) provide a convenient,
simply canonical representation of estimable functions and are
uufull in many theoretical investigations. One interesting poine
to be noted is that the coefficlent vector of the function ‘E;.-E— arid
its BLUE ﬁi'gffi are the same, except for a scalar multiplier ”fi‘
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Mere I8 another wav of looking at the BLUE of an eat imable

function YA, On account of eatimability, there ia at least one

unbiased estimate a'y of A'A.  The vector a', then can be aplit as
At moa'P o+ oa'(1-p) , (10.1)
whit b
P = %5 X' {10.2)
s nxn, symmetric (see 3.10), and idempotent of rank equal to

rank P = trP = tr 8§ X'X = teH = r. (10.3)

The twe compoments a'P and a'(I-P) are orthogonal, because
(a'P)(1-F)'a = a'(P-P)a = 0 , (10.4)
3¢ P =P, and P' = P. The unbiased estimate a'y, therefore, can be |
expressed as . .
a'y = a'Py + a'(I-P)y , (10.5)
where the first term on the right side of (10.5) is

a'Py = a'xs'x'y
= a'¥5 X'XB (due to 1.11))

'8, (10.6)

' as E(a'y) = 4'8 implies a'X = A'. Thus a'Py is the BLUE of A'B
and therefore, the other component a'(I-P)y 1s a linear function
belonging to the error space, due to the orthogonality of a'P and
a'(I=F). (10.5) therefore shows that, glven an unbiased estimate
of & parametric function A'B, one can obtain the BLUE by using the
matrix operator P. The operator P splits a'y as a'Py and a'(I-P)y
and throws out a'(I-P)y, ylelding the BLUE a'Py. Since a(I-P)y
belongs to the error, its expected value 18 zero and provides no
information on B and simply inflates the variance of a'y, If we
remove this portion from a'y, we get the BLUE. The following
diagram illustrates the same point,
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P-operator

e =0 a'y =a'py -‘ > BLUE = a'Py
+ a'(1-P)y

a'(I-P)y thrown out.

In the geometrical terminology, a'P is the projection of the vector

L]
A" on the vector space of the columns of X. This can be readily
seen from

a'P = a'xs'y'

= 2'X', wich B' = a'¥3" | (10.7)

So, from (1.6) aPis a linear combination of the columms of X. The
other component a'(I-P) is orthogonal to the columns of X as
a'(I-P)X = a'% - a'¥s"x'x
=a'X-a'm

=0, as X = SH. (10.8)

Thus, a'P is the projection of a' on the estimation space and P may
be called the projection operator.

It may be interesting to see what happens, if a'Py is again
“passed through" the P-operator Box in the diagram,

a'Py

Sy (arm ety 2
i & > a'Py =a'py

+ a' (I-P)Py =

‘L,&'{I-PJPI 2l s {P-PE}I_ =0 .

We thus find that, no part of a'Py is thrown out and a'Py comes out
as it is, showing that it is the BLUE in fact. This is not P,
prising as !fP is in the estimation space and so its projection op
the estimation space 1is itself.
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L. ABDITTONAL EQUATIONS TO SOLVE THE HORMAL EQUATIONS
A molut lon of ; of the normal equatlons
'y = (X'H)R (11.1)

( olitained by taking p-r additional equations. (11.1) appear as p
cigunt fons In p unknowns but are really only r equatlons as rank
(¥'¥y = r. Suppose, for sxomple,

L'R o= o (11.2)
{n vne such additional equation employed. Then k must not be a
I {pear combination of the rows of X'X. Because, 1f k 18, elther
wio can obtain (11.2) from (11.1) by suitably combining Ehc p equa-

tions in {11.1) or we will get an inconsistency with k'E having two
different values. In either case (11.2) will not do so as an addi-
tional equation. Hence for an equation of the form (11.21) to be an
additional equation k must not be a linear combination of rows of
%'% and hence by the corollary of theorem 2 of Chapter 2, k'B must
he a non-estimable function. Thus all the p-r additional equations
we may take to solve (11.1) must be involving non-estimable para-
metric functions.

In practice, it is not necessary to check first whether k'g is
¢stimable or not, before taking (11.2) as an additiomal equatiom,
because if we take (11.2) and if Elﬁ is estimable, we won't be able
to selve (11.1) and will have to throw out {(11.2) any way. The
additional equations are ugually chosen by inspection, common sense
and their suitability is automatically determined, if we are able to
get a solution of é.

Usually, in practice the rank of X or X'X 18 determined from
the relation

rank X = p, the number of equations in (11.1)
- {p-r), the number of linearly independent
additional equations used. {11.3)

12. REDUCED NORMAL EQUATIONS

-
Let us partition the vectors f, q and the matrix S as
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o |8 |
E'—f'—| 5 g = = : (12.1)
& | | %
I
B 1
s 5
g« | 48 | ab| . (12.2)
_Sb‘ S

vhere E' is mxl, Eh is (p-m)xl, a, is mxl, 9, iz (p-m)xl and Eaa.
Sab* Spy are Tespectively mom, mx(p-m) and (p-m)x(p-m). Also

Snb = sgl. From the normal equations

g~ (X'M)5 , (12.3)
it fellows that
Vig) = V(X'y)
= X"W{y)x .
- X'Xo?, (12.4)
This is an important property of the normal equations, which we can
state as:

The variance-covariance matrix of the left hand sides of the
normal equaticns is :rI times the matrix on the right hand sides of
coefficients of the parameters 8.

This property is retained even if we "reduce”" the number of
equations (12.3) by eliminating some of the B's. To see thi;. we
wricte (12.3) u.ln;ﬁ{l!.l}l :ml (12.2) as

9, =58 +5S,8 , (12.5)

S = Speby + Supp - (12.6)
From (12.6) °

Sypfy = % - Sy.8, (12.7)
and _i_f_Fﬁi_l nonsingular,

g - Spp (% - URY (12.8)

Substituting this in (12.5), we obtain
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: =] =] A

{ - 5 i - s - o i ] " g
i, ab bbb I'rl::.nrl Enh hhﬁhnagﬂ (12.7)
These are called "reduced" equations, as I in eliminated from

{12.31) and we have only equations in a subset En of B, This reduc-

tion must be achieved without using any "additional equations” as

-

described in Section 11, or which is the same as saying Ethat Ehh
must exist. S;b will not do, because S;h needs additional equa-

t{ons to get EL from (12.7). MNow we can show that the Varlance-

Covariance matrix of the lefthand sides of these "reduced" normal

equations 18, (using 1d.4)
= ?fﬂq} - cqv{ﬂq'ﬂhjsgéshn

-1

- S,p5pp C0Viay04y)
-1 -1

S.b5bb" @s’ Sbbba
3

-1
h SaaE - Eabgbbsha”
=1 5 =1 =1 2
- 8,45b5ba° ¥ SabSbbiubibt be’
FJ

-1
o ll'rE.aa_Ssl|:|151:Ll:|5|""l:|a:'

- az times the matrix on the right hand sides of the .

&

2z

reduced normal equations. (12.10)
The property is thus retained 1f a subset of parameters is eliminated
without using any additional conditions. The reader can check that

(12.10) does not necessarily hold if s;h is used.
13, TLLUSTRATIVE EXAMPLES AND ADDITIONAL RESULTS

¢« Example I.

If y = X& + ¢, is the usual general linear model, with rank
X=r < pand if AE are r linearly independent estimable parametric
functions, show that the model can be expressed aas

y=Z8 +¢c, f13.1)
where AR = 6, Z 18 nxr and is of rank r, so that y = 28 + c is a
full rank model. Show further thall the BLUE of 8 obtained from the
lateter full rank model is the samé as Aé, the BLUE obtained from the

sriginal non-full rank model.
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Since rank X = r, there are at most r linearly independent

egtimable functions and we are given that Af Is such a set of r t -
linearly independent estimable functions, Hence, every estimable, . 1
lineer parametric function must be a linear combination of the

elements of AB. Hence XB, which is estimable must be expressible as |
XB = ZAS , {13.2) '

for some nxr matrix Z of rank r. So the original model
I=X +=£
- ZA8 + ¢

t;E + € . (13.3)
The BLUE of & (since this 1s a full rank medel, B is estimable)
from (13.3) is

E = {3'31-12'1 3 {-131-‘:}}
On the contrary, from the original model,

E=(X'0)X"y (13.5)
and we need to show that Ag, with B of (13.5) 1s the same as 6 of
(13.4). From the identity (13.2)

X =ZA. (13.6)
Hence XA' = ZAA', (13.7)

But A" is rxr with rank = rank A = r. It is non-singular. So
from (13.7)
z = xA' ()™t . . (13.8)

Also A = A(X'X) (X'X) = A, the estimability condition of AR
therefore,

20X = ()X X
= (Aam) Lame
= (M*J'l.&_ﬁ'x*
s LB (13.9)

Fremultiplying both sides by {z‘zfl and post multiplying by y, we
h.'ﬂ.. from {13‘;#}1 [1315} and tljtﬁ}

o -
(z'z) 7 'z'zAg = 8
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i T

AB = 8 . (13.10)

This example shows that we get the same BLUE 1f we reparameterize
I a non-full rank model to a full rank model and that we can always

t do this by employing any complete set of estimable functioms in the

E original model.
«Example 2.
Consider the model
Fg Ay hoBy ks

. Yy = By + B, + ¢,

Show that A B8, + A,B, + hyBy 1s estimable if and only 1f A, = A +i,.

Consider a linear functiom a,y, + a,¥, + a7, such that its
expectation is 1131 + 1252 + 1333 identically. Then

E{alyl +a,¥, + ajyaj = aliﬂl + EEJ + 11{31 + ﬂj}
: " + 33[ﬂ1 + EE}

- (ll + a, + n3}51 +‘{:1 + ui}ﬂz

= 5 + a,B, (13,11)
and if this = I A B, , we have
1 11
4
- - 12
11 = al + az +in3, 12 al + 13. 13 EE (13.12)
and therefore
- 13.13
11 hz + 13 i { )
Conversely if 11 =k, + Ry,
By + AgBy + AgBy = (A +2A)B) + Ay8; + A58,
- hztﬂl+ﬂz} + 13{51 + :3}
- 113{31: + A,E(y,) {13.14)
b and hence there exists a function Ay, + ljyz vhose expectation is

3
fliﬁi or L 1151 i estimable.
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Another method of proving this result will be te compute the
BALTAx . TI1r- ““rm] cquat ions are |'nl'|r.nl11.q d by minimlzing
(y -E -H } + (y _gl-ﬁ 3% & (y _HIHH y2 (13.15)
They are
b, + + - " ) e
'\-1 oy - 2‘51 o4 zﬂ'z
¥, = EI + HB i (13.16)
The X'X or § matrix is
| 12 1]
] 2 2 L§]
|
L.. 0 ﬂ e (13.17)
Letzi 2
RAnE o E Yir 9 = "1 " ¥ar Qq = ¥y, we solve the equations.

Sioce the last equation is redundant, we need an additional equation.

We will try EE = 0. Using this we get

-~ - -

= = 3
The matrix (X'X) is, therefore (from the coefficients of q's)

0 1/2 o

(X'X)” = B o (13.19)

Eence
B 1 1 ¢
H= (X'X) (X'0) = 5w B {13.20)
-11!

The necessary and sufficient condition for estimability of A'B 18
then A" = J'H, Hh1¢h.fﬂr the above H becomes

[+ 1!-"." =i 13] [lll L 3]' . {13-21}
This will be so, if and only if

Ay =gy
or

Ao o= 3 4 )

1 2 3" (13.22)



Section 13, Illustrative Ezamples and Additirma]l Rasults &%

*Erample 1,

The period of oscillation t of a pendulum s !-*HE , where 1
{s the length and g is the gravitional constant., The periods
ohserved are £y [ = 1,1,...,“13 and lengths ll (1= 1,..05k) of
the pendulu=, im an experiment. Assuming the errors of obaerva-
tipns to be uncorrelated with zero means and varfance ﬂi, obtaln
the best unbiased estimate of 27//g and an estimate of its variance.

The model 1s
iy " Ex, + 2T (= 1ya0i,ks 3=1,00.,m,) (13.23)
where
g=2sifg .o % =2y . (13.24)
Hinimizing
=i i 2
; aftij - Eri} (13.25)
3
with respect to B, the normal equation is
e 2
F I, ;=" 8ELx (13.26)
13 1§71 iy 1
or
E = L Exit”u" E E::i
E 11
- 1/2 7
- L{Llj T:I--fi nlll (13.27)
where
T, =" Et .
f. i
§ b
Since a unique solution exists for (13.26), it is a full rank model
and
‘ 2 2
V(g) = o J"% 2 x,
2
L - ] Ii ﬂi.lri M “3-15}
This last result follows from section 6, observing that the matrix
5-1 reduces in this case to the reciprocal of L I Ii, coefficlient

of £ in (13.26). 1]

To estimate 1:2. we find, from (2.8.25)

2
SSE = I Le,,-BILcE, . x
14 2T g W
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]
-

and henes

o’ (% I ij =gk In &3/ (n-1)
i 4 |
where k
n= f “i .
as the d.f., of SSE are n-1.
« Example 4.,

For the model
Yy =B +Bfxg +e,  (4=1,2,3)

wvhere X - -1, Xy = o, %3 = 1, find the BLUES of B+ B
model is not correct and the true model is

2
yi ED + lei + szi + g

The General Linear Mode]

(13.29)

(13.30)

(13.31)

. If this

(13.32)

(13.33)

(13.34)

i E]
N
find the bias in the BLUES obtained. Generalize this result for a
full rank model. Examine the effect of a different scaling on the
values of the x's.
The model can be written as
?2 = 1 ]| El + £q
¥ 1 1] [
K &
or y= X +e .
The normal equations are, therefore,
X'y = X'x8 ,
™
which reduce to -
3y 3 0| |8
Y31 i

where y = Lyg/3. The matrix X'X being diagonal can be easily

inverted, yielding

1o ndk
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By = Fo By = (yy = ¥,)/2. (13.35)

However, {f the given model is not correct, and
E{?II - Hn + Elxi + E:“E* (L =1,2,3)

that is, {putting X, = -1, X, = 0, X, +1)
E‘.{:-'l.i' = By, - By + B,
E{YEJ = By
Ffvj} = BU + Hl + ﬁz,
wie ohtain
= = 1
Eﬁﬂﬂ} = E{y) = gE(Fl ¥, F ?33
2
= Eﬂ + iﬁz (13.36)
and
¥ ",
Etﬂll - E(FJ = EI}FE LY
= " 13.37
By { )
This shows that the bias in El} is I:E.I'E,'IEE but El is unbilased.
To generalize this result, we observe that for the model (Full
rank)

y= 4 + €,
the BLUE of E 1is

B = (x'0 'y .
However if the true model has additional terms and is
y=XB 42y +E, (13.38)

the expected value of the BLUE 1=
B(E) = (X' X'E(y)
- (X0 % (Xg + 2y)
- g + {x*m'lcx'z:tl : (13.39)
The bias in B is thus '
{x'xy'lix'z}l . (13.40)

The effect of rescaling the values of ui'a is to multiply each

column of X by a constant. If these constants are hl""'kp for the
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Eﬂ].l-'l-.'lﬁ and EI.EI,...IEE fl:rr the fﬂ]umﬁ ﬂ.f E_. the new X F:I-Tl'd i

matrices are
XX and IC , (13.41)
vhere

l-_ E = dllg{kl‘i.‘.hp}j [ diEE{flu*--lfgj- {l]‘-ﬁ?]

Hence the blas in 8 given by (13.40) is altered to
xx"m) -t gx'zo)y . (13.43)

These results are useful in response surface methodelogy, where an
experimenter may assume a response surface of degree Z and the
actual surface may be of degree 3. For more details see Myers [49].
» Exrample 5.
For a full rank model, ¥y = X& + g, show that

v{ﬁpw 13{;;51:}'1 .

where X, 1s the p-th column of X, Show further that the equality
holds when Ep is orthogonal to the other columns of X.
Ftu-_in-r:tinn 6, .
V(E) = nzcx*n‘l, (13.44)
a2nd so, if (X'X) and [I‘n-l are partitioned as

5 &
=1 — 'A-P_l L5 p-1
and
1I' 8 £I a 1 Elar'ﬁj}

FP

*

we have

= 2
vi( H-P} a 'pp

2
= oPls,_, I/1s|

- 2 =g o
oIS,y 1/U0s, (o oms's " o)), (13.46)
The last relation follows from (1.3.11). Therefore,
- a®
V(g ) = . "
P s -a's”} 8 Wi
PP = p-1=

%% © “pp (13.48)
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i ﬂlﬂf” I n pon=negal lve gquadreatle form, henee

-1

> -n'S " (17.49)

([ ] fil
PE = PR = p=1='
from whieh It 1ls ohvioua that

/ ;: rr2 y "2
\E-P} > {Evgﬂ} (113.50)

and the 1.'I'|IJ.|'.I].it'!|" halda I!I1'|'|_:|.' 11 ﬂ'ﬂl:] lﬂ, - Ur whilely ﬂ“ﬂ!ll 1w [['l,"ll
only if 8 = 0. But the elements of A, from (13.45) are

xx, (= Lieaop=1)
as

§ = X'X m [51....,Ep|'|51.+..,5“|. (13.51)

Therefore, the equality sign in (13.50) holds only when
Eiip =0, 1¢p
or that 5? is orthogonal to the other column of X,
* Example 6. y
Four objects A, B, C, I are involved In a welghling exporiment,
Put together they weighed y, Brams. When A and C are put In the laft
pan of the balance and®*B and D are put In the right pan, a weight of
Y, Brams was necessary in the right pan to balance, With A and B in
the left pan and C, D in the right pan, yz grams woere necded in the
right pan and finally with A, D in the left pan and 3, € In tha right
pan, ¥, grams were needed in the right pam to balance, T[ the
' observations Yis Yar Yo Y, are all subject to uncorrelated arroras
with a common variance o°, obtain the BLUE of the total of all the
four ocbjects and ites variance,.
The model can be written as

}’I‘H+H+E+D+E1
= A+ C=08=0D+% Eq
Tl = A4 BF=C=D4% £q
jrﬁ'ﬂ-*-l}vﬂ'-'ﬂ'l'f-#.

where A, B, C, D denote the true welghts of the objects. Hinimising
the sum of squares of the residuals, the normal equatlons are
q=- (x'x;é (13.52)

where
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ﬂ o “‘ Il ._ = [""' Hl 'C. D] 4
and X, the matrix of coefficients of A, B, C, D In the model g

1 1 1 1

1 =] 1 =1
1 1 -1 —IJ

_1 =1 =1 1 *

Therefore, :

X'X = diag(4, 4, 4, 4) = 41

} (13.53)

and
1

x'07 - @1
50 the model is of the full rank and
' - 1
£ = (X% 11'-5
and therefnre thc BLU’E of the total w-eight is
AR & C+D = 3 SO W I 1]f,= u{ql tq; +4q5 +4,)

o (13.54)

vhose variance is aobviously az.

. Example 7.

Consider the model,
3.r‘|,_-:.|+|:11-I-EE+E:2

=y + .y + Bl + €y {13.55)

2
y5 = u 4 a, + El + Eg

Yo ™ U + a, + 52 + £

= u o+ ua + EE + 55‘

(a) When is lﬂy +-A1nl + 12 4 + 13m3 + lﬁﬁl + 1532 estimable?
(b) Is a + a, estimable?

(c) Is El -E2 estimable?

{(d) Is u + “1 estimable?

{e) Is 6p + Enl + qu + 2u3 + 3&1 + 332 estimable?

(f) Is @, = Euz s estimable?

(g) Hhat is the covariance between the BLUES of By B, and

)=ty if they are estimable?
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-~ (h} Obtain any linear function of observations belonging to
the error space.
(1} What {8 the rank of the estimation space?
Since all these questions are about estimability and BLUES and their
variances, it may be a good idea to get the matrix H right away,

For that, by minimizing the 5.5. of residuals, with respect to p,a

(1 =1,2,3), ﬁ} (] = 1,2), we obtain the normal equations as
- 3 - 2a
ql = byu + 2% ae + Jiﬂj (13.56)
9, " 2u + Eul + Eﬂj
iy " 2u + Euz + Eﬂj.
q& = .21_,] 4 2I:|3 +]‘:E|j'
q5 = Ju + Eui + SEl,
9 = 3p + E“i + 331.
leve gy =+ E¥p 9y Tp TR Uy AL F W AW Py S XYy
3 + :"IE'I "16 = YE. + :"ﬁ + fl"ﬁ (13.57)
To solwve these equatiuns, we find from the last two equations,
—fqﬁ - 3 - Ia,) (13.59)
EE = i{qﬁ - 3p - Iui}, (13.59)
Substitute these in the r¢m;1ning Equatiunﬂ and we get
qznzu-l-lﬂ.l-r- (q5+qE-E||.|—EEu.:|. or
2
9 = 3a5 + ag) = 2a; = 5oy, (33.60)
and similarly
1 - 2 £l -
1, --i(qi + qﬁ} - Eaz iEui (13.61)
and
4 3115 & 3 31

If we think that (13.60), (13.61), (13.62) are three equations in three
unknowns a, (1 = 1,2,3), we are wrong, because 1f we find ay from
{13.60) and put it back in the other two, we get only one equation.

50 we need an additional equation. Since Ea, occurs in (13.60)} -

i
{13.62), we shall take Iui = 0, ylelding
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ll-l - ]j“.l I]'.ihl"l i L]h'i
. |

.|; - i“j A[q1 [l qni
. |

rl1 - J.Il flllll'q. i q“'l-r

IT we subist liute | heae 1y CVN0I) , C10,50) amed the F ool wapiind Lo

of (19.590) 1o goi “I'H? we abitaln

" I L]

Hj = §lag=)

. | .

“: - 1{““ - 1'1,‘! '.I i!h*"
ql = B o+ l"-r"] [
These appear an 1 wiual tona I unknowine, but (7 wo une the (lvat
two Lo find "l' n! In termn of i and subatitute (o the last, we Hat
‘I - L * 1“. which e true but does not Invalve e Ho we nesd one
more equation, Lot us Lake It aw EH1 =, san that, wa gel

T qlfh . (11.0%)
Futting this back In the other equationws, we pot

- qf. QI s '-Ih '||

Wy 1 g g ) . By kel 2
S0, we have obtained a molution of theme aquationn. We needed 2

(13,66)

sdditional equations, namely

ta, = 0, :ij -0, (13.67)
Therefore, the rank of the eatimation space 1a

= p = the number of additional equations

- - 2

-4 ., (13,68)
This anewers part (i) of the prnl:l:-.

Collecting coefficlents of Wty X% m-1,23,8), F.J (J =1,2) In

(13.5%), the X'X matrix in

& 2 2 2 3 3
g" e vige vy 5 g
XD *12 0 2 0 1 1
I O R R B
3 1 1 1 3 0
Tan B S S B | :

"
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Collecting coefficients of q], L PEEERTL P in the solutions uyay

(1o=-3.2.3). ﬁjfj = 1,2} given by (13.863), (13.83), (131.68), we find
. ] B
& 0 0 0 ] 0
1 g T |
(i} 3 0 0 3 3
5_ - L e l _1 -l
(X'X) = 0 i} 5 0 T "E (13.70)
1 1 1
9.8 9 g
1 1
5 0 0 0 7 0
1 1
""'E EI u u ﬂ' 3 s
Hence =3 —
7 1 1 1 1 17
3 3 3 T %
2 1 1
0 3 "3 "3 0 0
L 1,2 1
H 0 "3 +3 3 0 0 (13.71)
S T
0 3 3 +3 L] 0
1 1
o i} 0 0 Fi 7
1 1
_9 0 0 0 7 2] -
So, if A' = [:.u, Aye dge Age Ay, ,1.%]l
LH o= [A i+51 —l{a + 4.0 1—°+31 - 2, + XD
o 3 j1 itz 3-* 3 32 3’1 3 ’

A X
0o ,2 1 e P
+ =i -5{11+1=}. 3 +-§{L* 1-5].
A
0 1
il 1L Sl UL
Therefore 1" = 1'H, only 1f

lﬂ'-'l.l'l'i.!‘lrll-lﬁ-l'li.

This answers (2) of the problem. We find that this condition is not
satisfied for (b), satisfied for (c), not satisfled for (d),
satisfled for (e) and (f).

The BLUE of BL -ﬂ= is

(13.72)
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A 5 g: — Q
5 s
. ﬂl'ﬁz- T (13.73)
and the BLUE of ay -0, is ((13.72) is gatisfied for this functiom)),
& - qi = q
& 3
i A 7 . (13.74)
The covariance between these two BLUES 1= by (6.9),
2 .
g [0 00 01 <115 royj=0. ¢13:.73)
1
=1
0
0
0]

The two BLUES are thus uncorrelated.

To find a linear function, belenging to the error space, we use
(8.6), namely y - xﬁ belongs to the error space. In the present
example, the first element of y - IE is

L. -

:'rl'“ -a, -8

W
B 1 1 1 1
N7 T I - §asteg)] - [395 - gy
i 1 O
977% "6 Y 6%

-y -4 _1 1
Tl E‘:I"l + :'I'z} E'h'l + 33 + }"5} * Eh’z * Fﬁ * -'FE}
S S | 1 1 1
P17 st
B : 1
ERS T P 1S R R PR 7 (13.76)
This funotion belongs to the error space.

* Example 8.
Consider the model,

?1 = El - ES + £

1

?3'53"'&5*!3
rﬁ-5ﬁ+ﬁﬁ+;.ﬁ
Yo = B +0; %

A T Rl

1?-HI+H!+£?

. g = ﬁ# + EE + £ge (13.77)
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(a)

(k)

(el

{d)
(e)

By mianizinE the 5.5. of residuals, namely fyl - E = 6

i P fFH

where

q';.:fﬁ'*'!"ar 45'}’1"'1'2- qﬁ'?j*‘}*ﬁm

From the
Eal
A

G =¥ ¥V 9 " ¥y ¥ Yy 95 =¥yt oy,

& o (qﬁ o &3 En}xzr

g = l9g - 8, = 8,)/2.

How many linearly independent parametric functlons are
eatimable? Obtain a complete set of such functions.

Show that EI1 - HE is estimable, Obtain its BLUE and its

varlance.
Show that ﬂ] + HI is not estimable.
Find four different unbiased estimates of 8, - 8

1 2
Ohtain an unblased estimate of ﬂz.

= BB} » the normal equations are

a

L=

= Eﬁz + B_ + g’

o ¥

= 18, + 8, +

3 3 6 7t
q, =20, + 6.+

f ]

i+
g™ 205+ 8, +
g = 20 0, +
= MG 4+ B, +

Ei

&y

2!

L0 ]

f"

=l
d
et
L= B ]

3!

=
|
L
[=-
+
@ ¥
4+
L=-T%

8 5 4 (13.78)

? - 15 + ?ﬁ’ qE - y? + FB - {13+?g} I
last four equations of (13.78), we obtain

? - {q? e E’H L 53}1;21

(13.80)
fiflt four equations of (13.78). We get
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|
"

r
]

where

_1 - -

o2 L

1F 17

7% 3
1

9 T 2%
1

97 ~ 7%
1

93 " 7%
. 4

9% " 7%

1f we find 6. from the first,

third equation of (13.81) and substitute in the last,
to solve for En and so we take an additional equation, say

L.

g +8, =0,

2

Using this in {13.B1), we get

3

6. = L.,

1

[ -

.

%

Substituting these in (13.80), we get

L
L* ]
L]

o W
L]

7
aﬂ

1
Ei

L‘.

Lad

h:!ll—' H.Jr'_. M,t,InH MAI-—'-

i

&

MJ:‘I-F
sl ¥

o
-

r|.

el
a

|

1
- I..I +'E{L1 + Lﬁj.

%{‘5"2F1"L
%{qa'* L Eﬂl'1
%“J oy + 1y + 3
29 =1y -

-4 )

E from the second and &
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(13.81)

(13.82)

from the

we are unable

(13.83)

(13.84)

(13.85)

Collecting the coefficients of UL PYREETL ™ in (13.84), (13.85), the

matrix (X'X)

or § is




Rection 13,

=

&= | it

I
o L = [ R

Again, collecting the coefficients of 8

:Ic:l—-:ul-ll::l-ﬂ-l:lh:l

S i,

Illustrative Examples and Additional Besults Bl
: 1 1 g
0 0 0 -7 0 =3 o
1 3 1 1 3
b gmE sy
13 1 1 3
Lo "2 & § T 3
1 1
0 o 0 = .
. 7 0 =3
- gL % 1 3 ‘3
2 & 8 a8 B B
E gl ¥ 5.4 %
& 4 B 88 B8 8
I 4 1.1 .1 8.3
2 4 B8 B 8 =8
_1 3. 3 3 1 9
7 9<% % 8 8 B_ (13.86)

0

HOD D = O O M

0

o = H O o N o

Hence the matrix
H= (X"X) " (x'%)

'c o oo o o = |

We are now

-1/2
1/2 -1/2
-1/2 1/2
-1/2 -1/2
1/2 1/2
1/2 1/2
1/2 1/2

1

- - - - -
- - -

1/2

0

(=
[} (=T = L = =

a9 O - o oo

o M O O O = O

g 9 = 9 2 o o

quanwa:—-n

O = O O 0O o o

=T = T — I — T~ I — A~

Ip—lﬂﬂﬂﬂﬂﬂ"

lp--fiﬂa .Ln :hﬁ ﬁ-ﬂ-l‘n.ill
equations (13.79), the matrix (X'X) or S is
1.

{(13.87)

(13,88)

in a position to answer all the questions (a) to (3) 7
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Since we needed only one additiocnal equation (13.83) to solve the
normal equations and as there are eight unknowns, the rank of the
estimation space i r = 7 or there are seven linearly independent
estimable functions in a complete set.

A parametric function

g ow ) 13.89)
8= 00 A0, + ... + A8, :

is estimable, {f and only if l' = lIH' Using (13.88) to evaluate
A'H, we find this condition reduces to

Lo+ = 13.90)
1 2+Jl]«1-h|:I 15+1ﬁ+11-+ha. (

B
Hence, any estimable function E hiﬁi‘ can be written, using (13.90),

as (by expressing lH in terms %f the others),

L]

xltal + Ea} + 08, +0.) +3 {E3+EE} + (0, + EEJ

2 3

+ Ag(8-82) + A (B -8.) + ) (6.-0,) . (13,91)

Therefore, a complete set of 7 linearly independent estimable

functions may be taken as

6, + Bge 6y + 6o, By + 8., B, + 8, B - 6,

E B, =8,

6~ "ar &~ %
Aso, since (13.90) is not satisfied for E1-+ﬂz, it is not estimable,
but it is satisfied for & -EI and it is estimable, Hence, its

1
BLUE is

R R Rt R
'%’"1'1'1'%"4
=39 -9y - 39, * 7% 9 -39, + 29, (13.92)
P Pt W s W Wt e

The variance of thie BLUE is from (6.4)

ﬂz - I.l-. -1. n...DIS-[l.-llﬂ wa u]'

i %ﬂ.? . (13.93)
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The rank of the error space is only one as

n-r=8-7w=], {13,94)

To find a function belonging to the error space, we recall that
¥ - X8 belongs to the error space and we can take any element of

this as the rank of the arror space is one. Let us take the second

element. In the present example it is

27 Hz - 35
1 U T |
Y2 = Ly = 3Ly +1,) - 3(ag - 3L, - L, - 3L)
v ob. ¥ B 3
=¥y o s gl -, - 3l

1 1 1 1 1 1 1 1
B U 1 o T Tl o/ Tl = Bl
1
A SR T Pl M (S L S R B (13.95)

The error 5.5. in this case consists of the square of only one
linear function belonging to theyerror space, such that the coeffi-
cient vector of the function is of unit length (see 8.11)., From

(13.95), normalizing the coefficient vector to have unit length, we
get the required function as

A SIS ) o
By T Ty R Mt ¥y = T T = Ve = Wy F ) (13.96)

Hence, an estimate of Uz is .

e HBrorS.5. _ .. 2
a T A {3{1}1} /1

1 2
To cbtain four different unbiased éstimates of El-B « We Tecall
that the BLUE of an estimable function 1is obrain

ed (see section 10)
from any unbiased estimate by “projecting"

1t on the estimation

space and removing the part that projects on the error space. UHing-

this logic in reverse, we see that, any unbiased estimate of an
edtimable parametric function is {ts BLUE plus a linear combination

of functions belonging to the error space. Hence any unbiased
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estimate of 8, = ﬂl ig of the form

1
Hl - HE + d EE1}1 (13.98)

vhere El - E? is given by {lj.QIJ,lEEI}x by (11,96} and d 1s any
arbitrary constant, We can thus get any number of unbiased esti-

mates of ﬁl - EE by giving different values to d.

Exvercises
1. The deciles of a normal distribution are

d, = 17.5056 d, = 20,6764 d, = 23.992

1 4
- 18, - 71, = 25,5026

d, = 18.7189  d. = 21.6681  d

d, = 19.7684  d = 22,7592  d, = 27,8952.

Estimate by the method of least squares, the mean and standard
deviation of the distributien.
2. Consider the model
¥ = X8 + &, reo

wvhere ¢ H{E,ﬂEI}. Show that the vector AE is estimable, if and
only if one of the following seven conditions holds.

(a) A = BX for some matrix B.

(b) rf%] = r({X), where r stands for rank,

(e) r{X(I-AA)} = r(X) - r(A), for some g-inverse A .

(d) AX'X = A, for some g-inverse X ,

(e) AX, 1s invariant for every least squares g-inverse xi, that
is l_g-invtrle satisfying EI:! = X and EKI;}' tfx&;-

(f) rtnxl} is invariant for every least-squares g-inverse I;.
(g) :{Ax;} = r{A) for every least squares g-inverse R:.

[Alalouf & Styan (1)]
3, For a linear model, the normal equations are

10 -2 -8 El 12
-3 5 =3 Bq - 16
-8 -3 1l 53 -28
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Exercises &5

(1) Obtain any solution of the normal equations.
{i1) Find the maximum number of linearly independent sstimahle
parametric functions (linear).
{(ii1) When is llﬂl + LIBE + 1]E3 estimable?
{iv) If 1’8 is estimable, find its BLUE and the variance of
the BLUE,
{v) Find the eigenvalues and eigenvectors of X'X.
(vi} Find any non-estimable parametric functiom.
(vii) Obtain any two different solutions of the normal aqua-
2 -é i1a the same for

1°"2
these but that of |31+52+ﬁ;3 iz not. Why? \

tions and verify that the value of B8

4. For the model
E{yrj =go+Tr8, r=1,2...,0

Vy) = ¢%, Covly,,y,) =0, 143,

3
estimate a and B by minimizing a: + 3:, where
P
A =L (y -a-rtB)
P r-l r W
A =" {rr -a=TtB}.
ren-=q+l

Find the variances of these estimates. For what values of p and g,

will these variances be the smallest?

3. For the model &
¥ = &8 + ﬂr(xr - x) + €. r= 1.2, ...,0

vhere E. " HI{E,UEJ, find the least squares estimates of a and 2.

Obtain an estimate of uz also.

B. For the model
y=XB+e, £n N0,0T).

g{y) 1s some function of y, such that its expected value is
identically equal to zero. Show that the covarlance between g(y)
and any element of X'y is null.

Let L{y) be any function of y, such that its expected value is
A'6. Let i*,i;. be the BLUE of A"6. Defining
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g{y) = L{y) - »'p ,
ahow that

VIL{y)) » 1.'|.’~_‘f:}

=

¥ .
IThie shows that, when ¢'s are normally distributed, '8 Is not omly

"hest" among lincar unblaged estimates of AR but alse among all

unhiased cstimaten, )
7. For the model,
¥y = X8 +e, &N, o°1),

5 4s any non-singular generalized inverse of X'X, Show that
(s - 9)e

is not estimable,

8. Consider the full rank linear model
¥y =338 + c.

Then the estimated fEBidu&lﬂ_£ are given by

E-z-@

= (1 - Ple,

vhere P = KIK'IJ-IK'. The rank of the matrix I - P 1s n-p, Show

that the general solution of the equations

£ = (I-P)c
in £, in terms of p arbitrary parameters is

£= Y- X,
where € 18 an arbitrary p-vector, Good [20]

9. Consider an mxn matrix, M partitioned as

I"11_F‘1:&
g %

where Hll is rxr and

r = rank Hﬁl = rank M.




Y ! 0
11

g-inverss af M,

onsider a symmetric matrix § of order pxp and rank r < p.
k be

any (p-r)xp matrix of rank p-r such that the rows of K are

cimearly independent of the rows of 5. Show that
5 x'
-

k"o

is non singular and that if

i) !

5-—“ l ) {.:11 E'.I.I
| ¥
k'!'o ‘
C G
. 21 22 |
then EII = 0 and ﬂll is a generalized inverse of 5.

Il1. VWith the same notation as in exercise 10, show that ts-n-l:':}‘l
is a p-invesre of 5.
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Chapter 3

INTERVAL ESTIMATES AND TESTS OF HYPOTHESES

In the last chapter, we investigated which parametric functilons
were estimable and obtained their BLUES and the varlance and co-
variances of these BLUES. We did not make any assumption about the
distribution of tzu errors £, in the model. We assumed they had a
common variance o and were all uncorrelated. In order to obtailn
interval estimates and test hypotheses about estimable parametric
functions, we need to assume, now, that the errors have a normal *
distribution. Since uncorrelated normal variables are independent,
the assumption of independence comes in automatically. We will
denote this assumption of normal independent distribution of e's,

with the same wvariance by

e, VNI0,00)5 (1 = 1,2,...,m).

1. DISTRIBUTION OF THE ERROR S5.5. AND OTHER DISTRIBUTIONS

First let us find the distribution of the Error §.5. given by
(2.8.17) or (2.8.14)., Since the £, are HI{ﬂ,ﬁI}, from (1.1) 1it
follows that the y's are normal independent variables with a common

variance az and means given by
E(y) = X8 . (1.1)

Consider now the n-r functions h%ili (1=1,2,...,n~r) of section 8
of Chapter 2. These belong te the error space and have therefore

zero means, From (2,8.9), their variances are all uz and from
(2.8.11),

i i ot 2 -
Eu?{htilll E“}I} E{i}{ﬂ HEU} 0. (1.2)

69
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We now state an important result in multivariate analysis, without

proof , (See for example Eshivsagar (400, For |‘r"?“f}'

Theorem 1. Linear functions of normal variables have a joint
multivariate normal distribution; the parameters of this multivariate
distribution are the means of these linear functions and their
variances and covariances.

Un account of this theorem, we find that Eiijl (L =1,2,...,n-1)
which are n-r linear functions of the normal variables ¥, are (n-r)
independent normal variables with zero means and variance uz. There=
fore, from (B8.14),

n-r {h'i I}Z

SSE.- . Te  =8) €1.3)

o i=] uz

= 5.5. of n-r NI(0,1) variables
and has a xz distribution with n-r d.f. We therefore have

2
Theorem 2. 1f y = ¥g + ¢, vhere the ¢ are NI(0,0"), the dis-
tribution of

7 Mia(y - X8)' (7 - X0

is a 12 with n-r d.f., where r iz the rank of X.
The identity of (1.3) and the expression for SSE used in the

statement of the theorem is proved in Chapter 2, equations (2.8.17)
and (2.8.23).

Theorem 3. The Error 8.5, is distributed independently of the
BLUE of any estimable function,

Proof: By Theorem 1, the joint distribution of A'8, the
BLUE of an estimable parametric function A'B and the n-r linear
function E{I}I* (1 =1,2,...,n=1) belonging te the error space is
multivariaste normal. But by Theorem 10 of Chapter 2, the covariance
between 1'E and E“*r?.héi}l.iﬂ null. Hence, 1'E is independently

distributed of EEi}I (1 = 1,...,n-r). Therefore, 1t 1s also inde-
Pendently distributed of
n-r 2
= i
SSE= T iy,
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Theorem 4, The foint distribution af the BLUES of any m

inrarly independent estimable parametric funceions Af, where A Ia
M I vank m 12 multivariate normal with mean .“.E and wvarlance-
tiancre matri= .*._-'.-.'Jr Further,thia diseribucion 11 {ndependent

the prror §.5.
thecrem follows from the fact that ﬁé. the BLUE of AR are
m linsar functions of normal wariables ¥ fas é - E‘H'IJ* with mean
Fhd vatrlance-covariance matrix ﬂE_ﬂ'JI (sea (2.6.13)). By using
‘Ff-rrv_- of this chapter, this result follows. Again by Theorsm J
every ' is independent of Error 5.5, and thus the distributions of

" and S5E are independent.
Thecsrem 5, The discribution of
(AE - AB) " (ASTA'0) 1 (A8 - AB)
is a ;E with m d.f.

Froof f
In Chapter 2, Section 6, we have proved that the matrix AS A" of
order m iIs non-singular and symmetric. Its elgenvalues f l R, 5

are therefore positive. There exists an orthogonal nﬂtrix & such that

(AS™A") = A diag (f A

1 ot
“e shall denote the symmetric, non-singular matrix

1/2 (1/2 1;2
By s

by (AS I‘]h, because [AS ﬂ‘]u is in fact a square-root of as‘n*. as

A diag [f A

can be verified from

1/2 1/2 1/2 1/2

A diag (f) peveaf TINY = oaSTAY,

....I JA' A dia If[

Also observe that
fhs‘ﬂ'}‘h = the inverse of {as'ﬁ'n”

- a a1/ et
How consider the m linear combinations
2 = (ASTA') " 3(AB-AB) (1.4)

LT L iy Ml i N T
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-~

of the normal "-TET'I.EI!:I].E'S AE. E]Ir Theorem [} these linear E.Bmhinﬂtinns

are again jointly normal with means given by

E(z) = 0, as E(AB) = A8 (1.5)
and
V(z) = (ASTA")™F v(ag) (ASTA) T
= (AsTHY TE(ASTA' 0% (asTA) R
= g°I. (1.6)

The z's are thus HI{D,ﬂE} and hence

J’fi’i = —15 (the 5.5+ of elements of z)
o a

= (A8 - 148) " (48™A"0%) "L (4f - 1)

is a xz with 1 d.f. The theorem is thus proved.
If m = 1, and we are considering only one estimable parametric

function, say A'E, 1t follows from (1.4) that

z= (A6 - 2'B) /s~ Y/ (1.7)
is H{ﬂ,ﬁl}, and

{ifﬁ - l‘ﬁlzf{i'ﬁ-ﬂpg} {1.8)
iz a xz with m d.f. The theorem is thus proved.

It also follows, from the independence of AE and the erreor §.5.

proved in Theorem &4, that the 12 distribution of the quadratic form
& =y 2=l

(AB = AB)'(AS A'oc™) “(AB - AB) (1.9)
is independent of the distribution of the error 5.5. Since the ratio
of two independent 12 variables divided by their d.f, is distributed
as an F, we have the following theorem.

Theorem 6. If ¥y =ZX8 + E, where the € are HI(D,uEJ_ the dig=

tribution of

(A8 -AB) " (AS™A") "L (AR - AB) /m

1.10
SSE/ (n-t) ¢ .

is an F with d.f. m and n-r.
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Note thoat the I-'J (1.9 and (1.73) cancela, on taking the

vable and the seoacistle of Thoorem 6 1a free of thls unknown
[y mes Ly ”J'
Apnin ag o partleular epse, when m = 1, we find that the dis-
i bt Loy asl
(A'B = X' 0)/ (CSSEYCA'S™ 1/2
ATRIFU(SSE)(A'S ) /{n-£)) (1.11)
s Stadent's ¢ with duf. n-r as 1t i{s the ratio of a normal variable

(ace 1.7) to an independent xz divided by 1its d.f,
Mext we shall derdve the distribution of
W= (A8 - @) '(AsThe®) " (g - @) (1.12)

where d is any mxl vector of fixed elements. Again we make the trans-

formation
u = {ns‘n':";’mﬁ - d) (1.13)

similar to (1.4). Since these are m linear functions of normal
variables AR, they have a joint m-variate normal distribution with

maans

E{u) = u, say = (ﬂﬂ-h‘}_l“{hﬁ - d) (1.14)
and variance-covariance matrix,

Vi{u) = {ns“n'}"‘v{nﬁ - g:l{nﬂ'n')"'*

= [ns'h'}“"{ns‘n'uzy(ns'n'}“h

2 -
=g L. (1.15)

Thus ul‘ui""*"m (elements of u) are normal independent variables
with means BysMope syl (elements of u) and variance uz. The dis-
tribution of

! ui + .es + u1

T8
= (1.16)
a o

e
le

l‘-"!
(]

is known as a mon-central KE distribution with m d.f. and this dis-
tribution involves, besides m, a parameter known as the non-cen-
trality parameters, defined by 2
' 2 4 +
oo I By s MG (1.17)

ﬂ'z ﬂ'z :




7h Chapter 3 Interval Estimates and Tests of Hypotheses

For a derivation of this distribution and other details, reference
may be made to Kendall and Stuart (37). Substituting for u and u
from (1.13} and (1.14) in (1.16) and (1.17)

Wt sl . (1.18)

™

we obtain the result

¥

(This notation means that W has a non-central y- distribution with m

d.f. and non-centrality EE} where

8 - (AB = g)'{ﬂs'ﬂ‘}-l{ng - ﬂ};gz_ (1.19)
From the disctribution of the uirgl it can be readily verified that
E(W) = m 4 &2 (1.20)

V(H) = 2m + 462,

2
When 52 = 0, the non-central 12 distribution reduces to the x dis-
tribution and thus,

when M@ - d =0 , (1.21)
W~ xi "
or that W is a 12 with m d.E.

2, CONDITIOMAL ERROR S5.5.

The gquantity
(v - X8)'(y - XB) , (2.1)
where é_is a solution of (1.11), was the unconditional minimum of
(y - %8) "' (zy - X8) (2.2)

with respect to § and hence it is sometimes referred to as the
unconditional error 5.5. Its distribution was derived in the last
section. We shall now consider the conditional minimum of (2.2),

when B is subject to the consistent comditions

k]

hE = d , (2.3)
where A is mxp, of rank m and AE are estimable. The minimum wvalue
s0 obtained will be called the conditional error 5.5. To find this,
we use Lagrangian multipliers Ekl,Ikz....,an for the m conditions,

L i
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ih}g =d, ({=1,2,.,.,m (2.4)

of (2.3), where léi} is the i-th row of A and d, is the i-th element
of d. We, therefore, replace B by E to distinguish the true § from

the value that minimizes (2.2) conditionally and differentiate

= (y-XB) '(y-XB) + 2k {A“._.s =)+ el + 2k QG }E -d ) (2.5)

with respect to E and equate the result o Zero, :1 Yoo
d ~ /
— 4 = =2X'y + 2X' 2 o
dé $ ¥ X i + kll{lj * sae * Ekmi{m} . pe ™
o ? I;r'-n

- =2X'y + 2X'XB + 2A'k , (2.6)

where k is the vector of the elements of kl""*km' _ﬁ is therefore
a solution of

X'y = X'XB + A'k (2.7)
and recalling the normal equations (1.1.11),

X'y = X'XB (2.8)

we have, by subtracting (2.7) from (2.8),

X'X(8 - 8) = A'k. (2.9)

To obtain k from this, we use (2.6.16), where we had proved that
ASTA' is non-singular. First we multiply both sides of (2.9) by
AS” and obtain

ASTS(E - B) = (ASTA")K . (2.10)
But 55 = H and AH = A (see 1.6.12) as AB 1s estimable. Using this
and multiplying both sides of (2,10) by (AS”A")"l we obtain
k= (As"A" I - 8)
= (saN g - @) , ; (2.11)

on account of (2.3}, Substitufing this value of k in (2.9), we
obtain

X'X(E - 8) = A'(AsTAY) " L(Ag - @) . (2.12)

The general solution of this is (on account 2.2, 0%

2

Bew B*=STA (ASTA)R(AE - @) + (1-B)z , (2.13)
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whete 2 is any arbitrary v tor. This nr|||:.-1|!'|-"'|1 EhEt‘E‘f'ﬂl"E Ei"fES Ei‘q-

A particular solution is

E-8 =5 &' (AS" A"

Leng sogy (2.14)

It does not matter, what solution of (2,7) we take, as we get the
same value for (v-XB)'(y-Xg), when it is minimized with respect to

& subject to A8 = d. To see this, consider #, any solutiom of (2.7)

and %ﬂ' anv other value of § both satisfying the conditioms (2.3),
that is
A = d; A8, =d . (2.15)
Then
(y-X8) " (y-X8,)

= (¥-XB + X8 - XB)"(y-X8 + X - X8,)

= (y-X8)' (y-X8) + 2(8-8)"X"(y-X8) + (B - B ) "(X'X)(E-2.)

- (y-XE) ' (y-X8) + 2(B-B,) ' (A'K) + (B-8,)'(X'X) (B-8,),

(due to (2.7))
= (y-X8)'(y-X8) + 2(AB-AB,) 'k

+ (8 - By)'X'X(8~8B) - (2.16)
But A8 = AB,

(B-By) 'X'X(E-By) = £'£ >0,

= d (see 2.15) and

where = x[ﬂfiﬂnl. Hence

(y-XB4) " (y-XB,) > (y-XB) ' (y-X8) (2.17)
showing thut_E minimizes (y-X8)'(y-XB) subject to A8 = d. Since, in
the derivation of (2.16), we only used (2.7) and (2.3), and not any
specific solution, it is obvious that any solution of (2.7) will in
fact minimize (y-XB)'(y-XB) subject o (2.3).

Let us now find this conditional minimum,
Conditional SSE
= Min (y-X8)'(y-XB) subject to AB = d, AH = A
B

- (y-X8)'(y-X8),
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vhere 8 is any selution of (2.7), such as (2.14). Hence conditional

S5E

= (y-X5 + X8 - X8)"(y-X8 + X8 - X8)

;?-xé}‘ii-xﬁj + E{E_- E}*x*{z-xﬁ}
+ (5 - 8) (X0 @ - B). (2.18)
%e now use X'(y-%8) = 0 (see 2.1.11), and
X'K(E - B) = A'k (see (2.9)),

and cbtain, from (2.1) and (2.18),

Conditional SSE = unconditional SSE + (8 - B)'A'k
= SSE + (A -AB) 'k
= SSE + {n_ﬁ sayrosTy ue - o, (2.19)

g5 A\ = d and k 15 given by (2.11). We thus see that the difference
between the conditiomal and unconditional errore is the quadratic

Iors
(A8 - )" (ASTAY T(ag - @) . (2.20)

Kote that ﬂé is the BLUE of AB (which are estimable, as we have
assumed MH =A), the parametric functions occurring in the conditions
(2.3), and fﬁs-h‘} iz the matrix of variances and covariances of
these BLUES, except for a multiplier a® (see 2.6.13).

We thus have the following theorem.

Theorem 7. The conditional minimum of the sum of squares of
the residuals (y-X8)'(y-XB), in the model, y = X8 + ¢, E(e) = 0,
Vig) = nEI, subject to the m conditions AB = d, where AB are esti-
mable and rank A = m exceeds the unconditional minimum or SSE by a
quantity which is a quadratic form in the BLUES of the parametric
functions Af occurring in the conditions, measured from d; the
specified valued of AB; the matrix of this quadratic form is the
inverse of the variance-covariance matrix of the BLUES, excluding
the factor uz.

Next, we prove that the difference between the conditional and

unconditional SS5E's, can be expressed as
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. 2
{a'(AB - d)]
May 2 UE-D)
a El{ﬁﬁ .'-.'}i

. (2.21)

where a is mxl and the maximum {s taken over all possible vectors a,

To prove this result, let

(AS™A') s = u

Ehs'ﬁ'}l'%(.@ - d) = v, (2.22)
Then . >
{a'(ng - ) ww?
a'(As A"a T g, =12
= (A8 - d)'(ASA") (A8 - @) (2.23)

by Cauchy-Schwartz inequality. The equality occurs, when
u is proportional to v,
that is, when a is proportional to
(AsTAY A - @) . (2.26)

Hence .
Max {a'(AE - &))°
‘! il{ns!nl'}i

= (A8 - g:‘{ns”n'}'lmi - d)

= the difference in the conditional
and unconditional SSE's. (2.25)

3. DISTRIBUTION OF THE REGRESSION 5.5.

To find the distribution of SSR{B), defined in {2.8,26), we
write

SSR(B) = B'q = y'%s X'y
= yv'Py , (3.1}

where P is a symmetric, idempotent matrix of rank r as observed in

(2.10.2). There exists an orthogonal matrix L of order axn such

that
LP L' - diﬂ-ﬂ- :l,lqlti |1 ﬂr-.aﬂi tj_z
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because the elgenvalues of an Lelompotent matrix are 1 and 0, with |
repeated as many timesn aa Its rank. So, From (3.1), aa [, 1n artho-
gonal,

SSR(B) = y'L'L P L'Ly
= u' diag(l,1,...,1,0...0) u
u

2 il
= u, + uz + s + uE (3.%)

L]
whoere

E“Li. {]l‘l}

Since u are linear functions of normal varlables y, u alwo ham a

multivariate normal distribution with mean

E{u) = L E(y)
=LXB {3.5)
and
Viw) = V(Ly)

uILL'

- T. (3.6)

Hence, from (3.3)

2 2 S
SSR‘E; l.:l-l + uz + oaea + “_r
e 2

o a

is the sum of squares of r normal independent variables and by (1.16)

has a non-central xz distribution with r d.f. and non-centrality

parameter (see 1.17) 2 2
[ECu)]7 + oou + [E(u )]

2
A -
2
= E(u') diag (1,1,...,1, O...00ECu)/o?
n=r
= (LX) 'diag (1,1,...1, 0...0) LXB/o"

E‘I'L‘dllgfl,l. seelyDis .ﬂ}LIEFEE

B'X'PXE/0°

E'H'xﬂ-ﬂ'}l@’uz
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"‘ _FTFEIPE . (3.7
as, from (3.2), by pre and post multiplication by L' and L, we get
P = L' ddag (1,1,...,1, 0...0) L. (3.8)

We thus have the following theorem,

Theorem 8. For the model y= XA+, N Mormal,
E(e) = 0, V() = o°I,

the distribution of SSH{E]fﬂE is a non-central 12 with d.f. = r; the

rank of X and non—centrality parameter Eﬁﬂﬁfﬂ2+ Also SSE and S5SR(E)

are independently distributed because
SSE(E) = g'8
= E.s“ﬂ {3'9}

and is thus purely a function of q which is the BLUE of X'XB as

noted in section 7 of Chapter 2. The independence then follows by
application of Theorem 3 of section 1 of this Chapter.

L. TESTS OF HYPOTHESES ABOUT ESTIMABLE PARAMETRIC FUNCTIONS

We will now apply the results obtained so far in this chapter
to test certain hypothesis about linear parametric functions.
The hypothesis

& L ik
Byt Ry

1-
v -
228 = 95
! -
2w " 4w (4.1
is called a general linear hypothesis about the parameters B of the

model (2.1.1). HD can also be written as

Hn: AE = d , (4.2)
' [
where A is the mxp matrix whose rows are E{I}""'ifm} and d 1s a
column vector of the elements of dl----;d‘- We will assume, without
loss of generality that the rank of A is m, as otherwise one or more

relation in (4.1) can be obtained from the others. Also wve assume

5 0 R R e e SR

-
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(5. 1% te he A ronelatent avatem.
The hypothesis H, 1s called "testable" Lf Af is estimable, a
necessary and aufficient condition for which is
AH = A, (4.3)
We shall assume (4.3), as only testable hypotheases can be tested.
By Theorem 6,
F B 1.
(ABE=ABY'CAS M"Y “(AEB -ABY/m
———— S (4.4)

SSE/(n-r)
has an F distribution with m and n-r d.f. and {f Hu is true, AB=d.

Hence, to tesk Hﬂ. we use the statistic

Sg/n (4.5)

S5E/(n=-r)
whera

ssHy = (A8 ~ '(AS"AN g - @) (4.6)
SSHﬂ being an abbreviation of 5.5. due te the hypothesis Hﬂ' m are
called the d.f. of H_.. IF H,k 1s true,

[ 0
SEHﬂfﬂ
SSE/(nr) “ Flm,n-r). (4.7)

SSHﬂfn
(That 1is SSE/ (n-17 has an F-distribution with d.f. m and n-r). The

test procedure is, therefore, to reject “n if the observed value of

SSH_/m
sszgfn-r} exceeds F, (m,n-r) vhere F, (m,n-r) 1s the 100(1-a)%

point of the F-distribution (d.f. m and n-r), defined by
Prob[(F(m,n-r) :_Fl_u{m,n-r]] - l-a , (4.8)
The level of significance of this test is o, a8

Prob(Rejecting HniHu is true)
55H /m

= Frob ﬁ%‘-‘--”-r k] FI_EEE,H-EHHH}

= Prob (F(m,n-r) > P, (m,n-r))

- 0 *

SSHBF-

1‘53!; En-ri does not exceed Ft_nin,n-r}, thére 1ls ao evidence
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against Hn'
To obtain EF.HD as required for this test, we must calculate AB,
the BLUE of AB, occuring in HU and their variance-covariance matrix
e 7 -
(AS A")o v And invert (AS |'..:I+ Sometimes it (g more convenient to

calculate HSHH, using (2.19), namely

SEHn = conditional SSE - unconditional SSE , (4.10)
where the conditional SSE is obtained by minimizing

(y-X8) ' (y-X8) (4.11)

subject to AR = d. Instead of using Lagrangian multipliers, often,
it is possible to incorporate the conditions of A8 = d in the model
itself and rewrite it in terms of fewer parameters and then obtain
the S5E for this “reduced" model. Suppose, on account of AE = d, we

could rewrite y = Xg + ¢ as

y=Z8 + & (4.12)
in terms of fewer parameters, designated by € now. The minimm of

(x - 28)"(y - 29) (4.13)
occurs at @ = E, where E is any solution of

2'y = z'28 , (4.14)
or, vhich means

8= (z2'0)2' , (4.15)

vhere (2'Z) 4is any g-inverse of Z'Z. The conditional minimum of
(4.11) is then the unconditional minimum of (4.13) and is

&-zé}‘fl-zﬁ)
B & _Efz'ﬂ - (4.16)
anologous to (2.8.25). Hence
ssHy = [y'y - 8'(2'D)] - [y'y - B'(2'p) (4.17)
- 8'(X'y) - 8'(2'y) (4.18)

= SSR(B) - SSR(8). (4.19)
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From (2.11.3),

rank & = the number of equations in (4.14) = the
number of additional independent equations
needed to solve (4.14), (4.20)
Also, from (2.19)

d.F. of ESHU = d.f. of conditional SSE,

- d.f. of unconditional SSE
= {n - rank 2)
—J;ﬂ {n - rank X)
= rank X - rank Z; (4.21)

the ranks are obtainable from (2.11,3) and (4.20) above, From (4.6),
a formal definition of 5.5. due to the hypotheses Hn can be given as
follows:

Definition.

Sum of squares due to a linear testable hypothesis in the linear
model ¥y = XB + £, € ™~ normal, E{e) = 0, Vfﬁ} = Ezl, is defined as
the quadratic form in the BLUES of the linear parametric functions
in the hypothesis, measured from their specified values, the matrix
of the quadratic form being the inverse of the variance-covariance
matrix of the BLUES, excluding the factor di.

If the parametric functions ﬂg}in HU are linearly independent,
the variance-covariance matrix of A8 will have an inverse, But if

it is not so, either H, should be rewritten, dropping redundant

linear combinations uruune may use & g=-inverse of this variance-
covariance matrix® However, we will not prove this last statement
in this book.

When H, consists of only one parametric function A'S, and m=1

SSHu reduces to

ii'ﬁ - dllzfj-_'s'i . (4.22)

and 1=
"The square of the BLUE of the parametric function measured
from its specified value and divided by the variance of the BLUE,

excluding the factor ot "
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In this particnlay

case, (.7) reduces to
SHHﬁ
SSE/ ooy ™ F(1,n-r) (4.23)
and this i{s the same as
A'E -4
{::;::_EE;?F}ﬂ'tn—r (4.24)

lthat is the left hand side statistic of {4.24) has a t-distribution

with n-r d.f., if 1-[{:I iz true], because

ili o dl
— 17y W01y, if Hy is true, {4.25)
(3's 2™
and is independent of
SSE 2
o* Y X t4:20)

The t-distribution follows from (4.25) and (4.26). Note that the
statistic

§p-a
ME - d

(A's72 o)

1/2

is the ratio of the BLUE of A'E measured from its specified value to
the square root of its estimated variance between éfsfi_az is the
veriance of A'S and 0% = SSE/(n~r) is an estimate of o-.

5. POWER OF THE TEST

In this section, we shall consider the power function of the
test of the hypothesis H

i}
Prob. (Rejecting Hﬂ|HD not true)
S5H ﬂfm
= Prob f—EEE?E;:;Ti > Fi_ﬂ{m.n"r}lﬂu not true)
- [ g(£) de (5.1
Fim,n=r)

l-a
where g(£) is the p,d.f. of the random variable
SSHDIm
£ * SBE/(n-1) (5.2)
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HRH“fMHE
= —_— (5.1)
S8Ef{n=-rio

Mhe distribution of SSE/o® is a II with n-r d.f. Ilrrespective of
whether A8 = d or not. But, from (1.19) and (1.12), SSHufﬂz is a

B

nen-central 7 with m d.f. and non-centrality ﬁz and hecomes a

-

central ¥ only when Eiz = 0, that 1is (see 1.21) when H[} is true,.

Hence £ is the ratio of a non-central y? divided by its d.f.
to an independent central x? divided by its d.f. The distribution
of such a statistic is known as a non-central F with m and n-r d.f.
\See Johnson & Kotz [36]). This distribution involves besides m,n-r
only 52 and hence from (5.1), the power of the test for H{.:| is a
function of 62, n-r and m and is given by the integral (5.1), We
shall rewrite (5.1), to indicate dependence of g(E) on its parameter
as o
Power of the test = | gfalm,n-r,ﬁz}dﬁ 4 (5.4)
Fl_nl:n,n-r}

An explicit expression of g[Eln,n-r,ﬁzl can be obtained by writing out
the joint distribution of ESHDFuI and by transforming to E. Refer-
encé may be made to Kendall and Stuart [37] for these details.

For evaluating the power functien (5.4), Tang's [76] tables
may be used. However Tang does not give the wvalue of the integral .
directly. His tables are In terms of a wvariable E2 related to E
by

mE

E - m . f5.5.}

Also he does not use 62, instead he uses

£, =m, f, = n-r, ¢ = Jﬁ!f{m+11i (5.6)

In his notation, the power function (5.4) can be rewritten as

L 2.2
Power = 'FE (p.d.f, of E )dE", (5.7)
El CF o) '
-a  1'"2

whére
E.F
2 1 1=o
l=a*"1""2 fi‘ 4+ EJ.F].-EI

(£,,1,)

. (5.8)
(fl,fif
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+% F9%als simnitamecos roefifem-s fmtsrrals for m linesrly

TEepencent ealimadle maramettic fusctios !E, we cbserve from

.
- -
= 1& =1E i o S g —
=5 = — - - - i £ . -
i -_— _— = = 'ﬂ..':l-fnl - 4 =g
T ] S o - =z
b =5 -

- (6,1)

= &cco=mt of (1.I5) s=d the defimirics of =7 the above statement
&= Te writte= alsc as
T .
= ra' (13 =&y 3*°
p MEx = = = - = -l S
o | 2  a'(is 1')a <m F, (mo-r) | = 1-a

x o 2 -2
- ® - - -
Pred @' (A2 -12)1" < a'(iS A'sT)aF, (m,o-T)m
=, o3 B Yy
for every a = 1 - a,

< {E:gyé_}rl_n{-,n-r}.]” .

for every 5_1
=1 =, (6.2)

where
V(a'Ag) = Estimate of Variance of _!'AE_
= a'(45 L)a o . (6.3)
From {E-z.}.
Prob[The interval g'lL 1{“1..{-'“"] éstimated Variance of
i'u}‘ln contains a'AE for every a]
- l - gy {E‘*j
(6.4) gives what are known as Scheffe's simultaneous confidence
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intervals for estimable parametric Funetions AR and their linear
combinations a'Af for every a. They are called simultaneous confi-
dence intervals, because 1 = a 1s probabllity associated not with
any single a'A8 but for all a'AB. You may be interested only in a
tew linear combinations of AR and you can derive their confidence
interval using (6.4) but 1 - a will be the probability not only for
those intervals but also of several others not considered by you.

‘"t 15 only a subset of m linearly independent estimable para-
metric functions of the entire set of estimable parasmetric functions.
(B.%) gives confidence intervals for AB and its linear combinations.
If we are interested in all the estimable parametric functions and
their linear combinations, (6.4) needs to be modified by changing
m to r (as there are at most r linearly independent estimable
functions) and changing AE to X8 or X'XE or any such set of estimable
parametric functions which include all the estimable parametric
functions.

In particular, if one needs confidence interval for a single

estimable parametric funetion A'B, (6.4) will reduce to

Prob[the interval i{g_i_[?{&'E}Fl_ﬁfl.ﬂ—f}}1;2

contains A'B] =1 - a. {6.5)

7. BREGRESSION 5.5.

Let us consider the particular linear hypothesis,
Hyt all estimable parametric functions are null.
Since XE contains all estimable parametric functions, HD may be

expressed as

Hyi XB =0 . (7.1)

The degrees of freedom assoclates with this hypothesis are net n
(¥E are n linear parametric functions), nor p (all parameters) but
r, the rank of X, because the number of linearly independent

functions in XB 15 only r. To find SSH_, we shall use (4.10),
name]y

ul
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H::'H” - r'”""l‘_:‘- s ':{l,!:'l't.',.' = :‘{||]- 5:I1f1|r'\l|'1 Ea :':P - ﬂ
".'

- Min(y - }"-I*_:'r'.'j' = XB) wneonditionally

= Min v'y - S5E

8

= ¥'y - SSE

- 8'g (see (2.8.25))

= SSR(B) . (7.2)

Thus the quantity Regression 5.5. or SSR{E),which we defined earlier
in Chapter 2 but did net explain why it is called so, is the 5.5.
for testing the hypothesis that all estimable paramectric functions

are zero. The F-test for this hypothesis is then provided by the
statistic

SSR(E) [t
TSE tner) (7.3)
which has an Fr,n-r distribution if Hﬂ is true. It will be inter-
esting to check that you will get the same SSED if Xg in HD is
replaced by any set of estimable parametric functions whose rank is r.

e Many times it is loosely or erronecusly stated that SSR(B) is
the 5.5. for testing the hypothesis

B=0. (7.4)

This 18 not correct. B is not estimable in the non-full rank model
and s0 E = 0 15 not a testable hypothesis., If the model is a full

rank model, however, this is correct as B is estimable and then
Xg = O implies X'X8 = 0 ,

which implies £ = 0 as (x':-:}'l exists,
If we "ignore" that 8 = 0 is not a testable hypothesis and

proceed méchanically to evaluate

EEHD = Min(y - XB)'(y - XB) subject to B=0
B

- Min(y = X8)'(y - XB)
B

= Min y'y - S5E
- y'y - SSE

= C—————
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= SSR(R) . {7.5)

we get SSR(R), which 1s the 5.5, for the hypothesis Hnt Xg = 0.
This does not mean that SS5R(E) tests 8 = 0. It does not. It tests
X8 = 0. The result of both of them is the model y = ¢ but still

= 0 i= mathematically not the same as XB = 0 and further the d.f.
of :'-"EHI~l are T and not p, as one would have concluded by counting the
fumber of parameters in the hypothesis B = 0.

In general, as seen from this example, if we have a hypothesis

about parametric functions, some of which are estimable and some are
0 by (4.10), the

test procedure so0 obtained will test only that portion of the

not and if we mechanically proceed to evaluate SSH

hvpothesis which pertains to estimable functions and ignores the non-

estimable ones. Thus, B = 0 can be rewritten in the equivalent form

X8 = 0, EB = 0

where rows of E are orthogonal to rows of X, and then EEHU will test
only X2 = 0 and ignore EE = 0, which are not estimable.

I1f AE are not estimable, the unconditional and conditional
minimmm of the 5.5. of residuals is the same and there is no test
available for testing A = d. This can be seen as below. Since Af
are not estimable, rows of A are not linear combinations of rows of

X'%. Hence, from section 11 of Chapter 2,

he = 4 (7.86)
canbe taken as additional equations to solve the normal equations

X'y = X'XE , (7.7)
[(7.6) are m additional equations while (7.7) are really r equations
s0 we will also need p-m-r additional equations and these can be
chosen in any suitable manner], If now (7.6), (7.7) are solved and
a solution ¢ is found, it minimizes S,5. of residuals unconditionally
as it 18 a solution of (7.7) and also conditionally because it
satisfies the conditions (7.6) also. Hence, there will be no

difference between the conditional and unconditional minimum and no

test will be available for the hypothesis Af = d, when AB are not
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estimable, 11, howiwvi o A comalntn of wome oot tmable and A Ny
catimable functions, an vemavked eavller, Lhe diflferonce of cond{«
tienal and wnconditiong] SSE'n will teat only the “testah]e" Parc of
the hypothesis tnvelving only the b fmalil oo Tone t lonsa,

It is therefore easential Lhat, before proceeding to teat g
general linear hypothesis, one should cheek whether the parametrie

functions in the hypothesis are all estimable or not. Otherwise,
unwarranted conclusions may be drawn and wrong d.f. used,

Another caution that must be exercised in using the formula
(4.10) is that EEHEI Is the difference between the unconditional and
conditional SSE's of the same model, Tn other words, an original
model must be "reduced" (in terms of paramcters) by the hypothetical

conditions. Thus, we cannot test the adequacy of one model, say
Yy =XB + ¢ (7.8)

as compared to another model

y=Ir+e 7.9}
by calculating

Min(y - 2y)"(y - 2y) - Min(y - X8)'(y - X8), (7.10)

X B

even if B and y have common elements. What is essential 1s that
(7.9) must be a reduction of (7.8}, by putting some estimable para-
metric functions in (7.8) equal to their specified values. If this
is not so, (7.10)can even turn out to be negative. This type of
mistake is more frequent these days due to the routine use of
computer for finding SSE'a.

Coming back to the hypothesis X8 = 0, the 8.8, for which 1is
SSR(E), 1t follows from section 3 of this chapter that the statistic
(7.3) will have I non-central F distribution with Ly, n-r d.f. and
non-centralitcy ﬁ (defined as (3.7)), 1if X8 ¢ 0,

B. QUADRATIC FORMS IN IDEMPOTENT MATRICES

There is an alternative way of expressing the Error 8.5.,
Regression 5.5. and 5.5, due to a linear hypothesis, This 18 to
show that they are quadratic forms in independent normal variables
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such that the matrices of the quadratic forms are symmetric
idempotent .
Toe expressz SSE Iin this form, we observe that

v - Xf = (y - XB) = (X8 - XB)

Im

- (X8 X'y - X3"X'Xg), as X = XH

=€~ X5 X"(y - XB)

= (I - X5 %")e

= (I - P)e , (B.1)

where P was defined in (2,10.2) as the projection operator. It was

also observed in (2.10.31) that P, I-P are idempotent. Hence
SSE = (y - xﬁ}'(:.r_~ xﬁ}
= g'(I - P)e . (8.2)
Now we consider the Regression 5.5.

SSR = B'X'y

(s X'y)'X"y

¥ X'y, as XSTK' = XsTX' (see 2.3.10)

= (£ + XB)'XS X'(e + XB)

(c + X8) 'P(e + XB). (8.3

Before expressing SSHD, the 5.5. for testing a linear hypohesis

Hys hg = d, in a similar form, we observe that

XSTA' = X5 A", (B.4&)

This follows from the fact that since AR is estimable, A = AH and so
(using (2.3.10))

XSTUAY = XSO 'H'A'

%5 'S5 A’

= XST'X'NSTA'
= X5 X'X5 A
XS HTA'
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= :‘:H_.ﬁ.1 . EE.S}
From l;-’-.ﬂ?l « wWhan :”'|:'|- s lr-l"-.. I:.liFI-iTIF'_ A=AH)
SSH, = (AB-AB) ' (AS™A')™ L (AB-AB)

(ASTX'y - AS7SB)'(ASTA") L(AsTX'y - ASTSB)

(ASTX' (y - XB) P As™AY)Y "HAsTX (y - x8))

e (B.56)
where, using (8.5),

M = xs'ﬂ'{ns'n'}'lns“x'.

(8.7)
Observe that

W - xs’h'{ns‘n'}"lﬂs'x'xg‘h*{ﬂs‘n'}'lns'x'
=M, as AS § = A . (8.8)

M is thus an idempotent matrix.

W havelthus expressed all the three 5.5. as quadratic forms in

normal varibles £, and in each case the matrix 1s an idempotent

matrix. In the case of S5R, it is in terms of £ + XE and reduces to

e£'Pe, only when X@ = 0, Further we observe that

(I - P)P =0,

(8.9)
and also

(I - PIM = (I-XS"X")XS™A'(as™n")~Las~ Ly

=0, ag 5 SA = & , (8.10)

The significance of these results will be clear from the results in

the next section about quadratic forms, in idempotent matrices, of
normal variables.

9. DISTRIBUTION AND INDEPENDENCE OF QUADRATIC FORMS

If € are n independent normal variables with zero means and

variance ¢ , any quadratic form ¢'Me, where M is idempotent, can be
written as

E}HE - EfHIKHK'EE § (9.1)
where K is the nxn orthogonal matrix, such that

ml - diﬂg {1-1,l'i.lgﬂlmlﬂj - {9-2]

\

A

e i e ST

e
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This is so, because the eigenvalues of M are 1 and 0, with 1

occurring f times, where

f = ronk M = tr M. (9.3)
Hence
e'Me = u' diag (1,1,...,1, 0...0) u (9.4)
£ n-f
where .
4 = Ke, {9.5)

2
is an orthogonal transformation of ¢'s to u. Since e's are NI(0,07),
u's are all HT{O,L‘IE} and therefore

s e'Me = =5 u'diag (1,00.,1,0...00u
a a
ui F aaa F ug
= 7 (9.6}
%]

and has a 12 distribution with d.f. = f. We have, therefore the

following theorem.
Mrheorem 9. If u is an n-vector of HI(U,UE} variables and M is E
an idempotent matrix, then the quadratic form H‘ﬂgﬁnz has a xz dis-

tributien with d.f. = tr M.

From this theorem and from the fact that
tr(I-F) = n=r (see 2.10.3) (9.7)
ttr P =1, (9.8)
and from
tr M(for M defined by (8.7),
= tr[xs'n'{ns"n'}“lns'x‘]
= ee[As™x'xs™Ar (4s™AN) 7Y
uﬁhs"n'}{ns'h':‘l]

= tr I
m |

= o, {g'g}

In deriving (9.9), we have used the fact that
tr = ARC = tr CAB = tr BAC (9.10)
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! & . wit havie Wi vt Al altevnal lve devival Lon |"lr ".hE fEBUItE
CEFE /" maw U owhen X8 = 0 oand ss5H S , when e = dl are x
Lea wif =r, 1 and m 4.7 respectively.

We o gtate the 1"11"'""'1”4'- thiarem:

em. 1f ¢ Me is a quadratic form in the normal variables ¢ and
. y : '.'I E
1E idempotent, and {F Vie) = o Tn but E{c) # 0, then c'Mefo 1is a
rom=central 3 with 4.f. = e M and non—-centrality parameter
1Y A Fa™

ihe proof of thies theorem is similar to that of Theorem9 with

-I'll. w1

v ¢hange that now the transformed variables u don't have
LETT means and o

2
(8] + oe + uf)/o? 15 a non-central x° (9.11)

o4

and the non-centrality parameter is

1, 2
—igr-lE{ulH + ol 4 EEEqu}E}

L=

1
. [E(ul}* Efuzji-+i.E{U“}]diEE (

i 1,0001,0...0) [E(uy)

1 E(u_ )
- _F'E E{E*jd‘llg tl:l--lll-u--'n}i:{llr}
e Efe"E"
ﬂz (c'K")diag (1,...1,0...0)E(Ke)
i '
- —;3 E(c )HE(c), due to (9.2) . (9.12)

2
From this, we see that 55R/o0” (s a ficn=central 12 if X8 # 0, with non-
centrality parameter g'x'xg.faz. and as B

- i = i -1 -
SSH, = (AB-d')(AS A') “(Ag-d) , {(9.13)

2 2
ssuufu will be a non-central x°, when HD il not true, with non-

centrality parameCer

(g - )" (™A Liag - a) /02, (9.14)

S
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One should note that (9,.14) 18 similar to (9.13), with ﬁé replaced
by its cxpected value AB.

We now state the following theorem about independence of
quadratic forms in normal variables, without-proof (for proof

reference may be made to Kendall & Stuart [37].

Theorem: Two quadratic forms HIH_'[E and H‘HEE in normal
independent variables u with a common variance o? are independently

distributed if and only if HIHE = [,

This is sometimes referred to as Craig's Theorem. It should be
noted that this theorem does nnt require H1 M, to be idempotent. If
they are, u'M Efﬂz and u'M ufﬂ will be 12 uariahlas and will be
independent,

The significance of (8.9) and (R.10) is now clear. These
results show that SSHu or 55B are independent of S5E.

We now state a more general result involving quadratic forms
in normal variables. It is known as James' Theorem and is a gener-
alization of the more well known Cochran's Theorem. James' Theorem
deals with components of a quadratic furm.E’ﬂE_with M idempotent,

when E.HE is split as

EIHI,'I_, - -E‘HlH =+ !IHEH + .. * -E-lllkﬂ - (9115‘]

Theorem: 1 If a quadratic form u'Mu in NI(0,1) variables u is
expressed as L u Hiu and 1f M is idempotent, any one of the following
{=1"
conditions implies the other two

(a) Hf = Hi' (1™ 1,.04,k)

{b:l Hiﬁj o n; {1 * jl "*J - ll"""ikl

{c) rank M = rank H1 + ... + rank Hk'

From a proof of this, we again refer to Kendall & Stuart [37].

(a) implies that ench_Eleg_iﬂ a 11. (b) implies that any two com-

iﬂ_and E'ng_nrn independent due to Craig's Theorem and
{c) implies that the d.f.'s of the Hl*a add to the d.f, of M, The

theorem states that if (a) is true (b) and (c) follow; 1f (b)

ponents u'M
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is true, (a) and (c) follow and if (c) is true, (a) and (b) follow,
In practice, therefore, it is enough 1f we can eatablish one of the
three conditions and then we will have independent 12 variables,

The importance of this theorem will be more evident, in later
chapters, when we consider analysis of variance and the total varia-
tion measured by a quadratic form is split up into several components
corresponding to a suspected source of variation, each. Several
generalizations and extensions of this theorem also are available in
the literature (see for example, Shanbhag [73]). For our purposes,

however, this version is quite satisfactory.
10. ILLUSTRATIVE EXAMPLES

Example 1. Consider the same model as in Example 7 of Chapter 2.
Suppose we want to test the hypothesis

HD= By, =y (10.1)
This hypothesis can be written as

oG -8, = 0 (10.2)

Gy = By = 0

and from (2.13.72), @ ~ @y and a, - @, are estimable. The
|
hypothesis is therefore testable. To find SEHO, we observe that

3 {qz '.I (10.3)
9, = 8, = 3(a; = q,) (10.4)
and since .
El - 23 - 0 1 0 =1 0 O u
“I = n3 0 01 -1 0 0 fl
%2
%3
1
| B2

and since (K'!j_hz givtn br (2.13.70) acts as the variance-covariance
matrix of [u, ul. nz. ng Hll , we find
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010 -1 0 of 5 (u 1 0 -1 0 of
(X'X) o

L, | lo 01 -1 © u| 001 -1 00
|
{ | 1 1 :12
= | z | (10.6)
] 1
|r-'|'
Fh - L] 1 |'-.I - s
T ' | 152
s -ml | 2 - (10.7)
i a3 4 o~ a
i) 31 s
. with d.t, = 2, as there are two linearly independent parametric
functions in Hﬂ+ Also, from (13.56) and (13.63), (13.65), (13.66),
the error 5.5. is
EE i~ ] L, ] ] ] [
SSE = i Yg T G9M T 998) = Qqfp T 9 84 - q551 - qﬁﬂz (10,8)
where q's and ;, @y Bj are given in Example 7 of Chapter 2. The

d.f. of S5E are (see 2.13.68)
ﬁ o] 4 - 2 - {lﬂlg}

The test then can be carried out by computing F of (4.7).
An alternative way to find SSH{:I will be to revise the model
' (2,13.55) by using (10.1) and the revised model Is

yp = W+ E e

Yo" ¥ ¥ By + &y

R e

=4+ B, + g (10.10)

It should be noted that the common but unknown value of the a's as

specified in H, is merged in u in writing the above model. Hini-

mizing the $.5. of residuals in (10.10), the normal equatiomns for




qh i .”.IIII“. | Pvwbaen wnl Fen Vi baeni gl Toridl m il ”.u'rll'”"l”.""-
this revised model are
'-i.l — h|-| 4 I|-ll I 1,;:'! “:u-IIJ-
[ - 'hlll ¥ T ~|I ]ﬂ‘
1e 1 I, (10.12)
9 = Ju 4 uﬁ? , (10.13)
where u, E]. i, are used inatead of “,ﬁ LGite, to avold confusion

prece
with the least squares solutions in the ariginal model,
were already defined in (2.13.57).

qll qﬁl qﬁ

Obvicusly, only two of the three equationa (10,11)-(10.13) are
linearly independent as (10.11) is obtainable from (10.12) and (10.13)

by adding them. So we need an addltional equation, which we can take
to be

u=0, (10.14)
vielding
El = q5/q5, B, % q./3 . (10.15) ?
Hence
SSR(u, B),6,) = q,u + 458, + q b, ’
- {qg + qé}fﬂ . (10.16)

The degrees of freedom are
3=1m=2

as we used one additional equation. Hence by (4.19)
ssuﬂ = SSR(u, O1s By 0q, By, B,) = SSR(u, Bys Bz}
= (qu + a0y + 439 + q09 + qgB) + q,B,)
2 2
- qu +q.)/3 ., {10.17)

This then can be tested against the SSE of (10.8) as before,
Example 2, Consider the model (2,13.17) of Example B of

Chapter 2, Suppose we wish to test the hypothesis

Hyt 0) + 83 = 0. (10.18) 7

This is a testable hypothesis as it was shown in (2.13.90) that
8, + Bg 18 estimable, Its BLUE 1s (from 2,13.84, 2.13.85)
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N N I
fpt8g 3% T T T 3%
. 3 g
8% Y e

and from (2.6.4) and (2.13.86),
g

- (15/8)a% .

v(g, + ﬁB} - 02{1 + =40

Therefore, by (4.22), as HD

2 i
SsHy = {&1-+EE} /(15/8),

vith d.f. = 1.

99
1 j
als * 8%
(10.19)
1
- E}
(10.20)

consists of only one parametric function

The error 5.5. 1s given by (2.13.97) and also has d.f. = 1.
The hypothesis can then be tested by the F-test of (4.7).

Example 3. Consider the model

Fy = Ny kg

where the parameters EIi are subject
n
I e, =10,
i
i

We wish to test the hypothesis

H.: 0, =0

(R § §°
The theory we developed so far did
the parameters in the linear model.

earlier results, we must get rid of

by expressing one of the B's, say En

TN e Dy

{10.21)

to the restriction

not assume any restrictions om
So, in order to apply our
(10,22) and this can be achieved
in terms of the others, using

{10,22). Then the model (10.21) is
y = 8yt ey {1 =1,2,.00,n-1)
and
L A I ﬁn_ii te, (10.23)
and has no restrictions. We, therefore, minimize
niltri S B R S N NP S (10.24)
with respect to El,...,én_l and obtain the normal equations as
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L - |!|r - n k :| ”I . flﬂ.ESj

L = 1.2 sea,n=1.

To wolve  these equatlons, we first add all of them and obtain
n=1 n-1.

LY, = {n=] =nf @
1 i {" }?Il i 1 _l

il uging this 1n (]U.EE}.
Uy mopoecy, s LR (10.26)
TN

where ¥ = I :rl-'"lh Since we did not need any additional equations to
1

solve (10.25), thia 18 a full rank model, with the rank of the
estimatlon space as {n=1), the number of parameters in (10.23).

Then, by (2.8.26)
n=1
SER(EIII,....B“_I} = T -ﬁl-:r;..ri—yn}

.
[ ] :I: ]ll'i = “}" {1ﬂi2?}
1

L)
with d.f. (n-1) and 5 %E‘_
i I'l-]. -

S%HI‘ LR nn_l};ifl Eifyi_}'n]

=2
= ny (10.28)

with d.f. = n-(n-1) = 1. To test H'EI’ we use (4.22), namely

o, - EJ:F
S8H. = iz

v vcﬁi-é‘j} excluding az
2

(10.29)

Wiy = ¥g) =% .

The test for H, is therefore provided by the F-Statistic
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2
ssnﬂjl {yi = yj}
- (10,30)
SSE/1 In},z

with 1 and 1 d.f£.
Mote that the BLUE of 8 is, by (10.22),

@ o

= - # e
&n {al +

n—l:
-y = ;’ (10.31)

n §
and (10.30) is wvalid, not only for i, § = 1,...,0~1 but also when 1
or j equals n.

Example 4. Consider the model

Yy = % + B, {“ij - x) + €4q0 {10.32)

1 = 1.2, 00K,
HI j = 1|2|-1*:n15

where x. = I % ./n.. We wish to test the hypothesis,
i ju1 -y ey |

H.: a, = “2 = L,,, = “k

1 1
By ™ By = «xu = B (10.33)

and 1if this ic rejected, to test
H:: BI-BE-I!--Eki
For such a model,

oy + 51(“11 - xi]

is called the regression line of a variable y on another variable x,
for the i-th (1 = 1,2,...,k) group. @, is the intercept on the y-
axls, when x = ;i and ﬁi iz the slope of the line and so

ixil ﬂijl {i - ll‘**lk}

are described as the co-ordinates of the group means. The hypothesis

H, states that all the regression lines are identical. We minimize

1 : o 2, - By (x %))’ (10.34)
I £ [y,, -, -8B, (= ,-x 3
R e T B S

with respect to the a,6's and Ei's. Before writing down the normal

i

ETEEST N L T e A T e ,
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¢ the following notatlon,

= Iygyi™y

“121 " 1T1jtxtj - %), (= 1,2,0.0,k).
Alsp

[ =

11e ~ $%1140 G2 T % Cyagr G220 T T G221

Further, ing x = En,x,/in,, ¥y = In,¥ fine
u er, letting x = nizifqni, ¥ "“13131“1' we de

—_
= Y i
Cila inifii X}

S o
C22m ;“i{?i g 1
C122 = E“iyl{xi-x}'

The normal equations, by minimizing (10.34), are, in this notatiom,

£

Y, a1 = Lieek) (10.35)

5 -

-

5121 - 511151’ (1=1,...,k). {10.386)
The solution of these 1s

e : Y = s 5
ﬂ'i ?1 ] Ei. Elzifcliil Ei 1¢|-|-|. I‘k}' flﬂ.ﬂ?]

This is a full rank model, as no additional equation was used, The
5.5, due to regression is by (2.8.26)

SSR(a,,B,, 1=1,...,k) = i{ni {9y * Cppu8y]
] €3
= T l:l.i'_ll'l + I T (10.38)
i i 111
with d.f. = 2k, the number of parameters. Then
SSE = n:yfj - SSR(a,,B,, 1=1,...,k)
14 1
cl
- Cpp, = I —orii- (10.39)
® -
22¢ { clll

wich d.f, Ta, - 2k or W-2k, 1f we let N = En,. To test H,, ve now
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tevise the model (10,33} subject to “I and rewrlte it an

-11 = iy 4 rlrtlj_‘i} & ril . flﬂ-ﬂlﬂ'}
il = Jiueesky ]"”.,,111

whero a is the common value (but unknown) of the ul'n and B of the

also unknown), as specified by H Minimizing the 5.5. of

{ i
reciduals for (10.40), the new normal equations are

Ny = HNa [],D,ﬁ],',i
cer = Elicﬁ ' (10.54)
with solutions
o=y, § = C]IEFE]IE . (10.413)
Therefore, the new 5.5. due to regression 1s
- " ._FF- -
S5R{z,B) Nya + Cllcﬂ
EE
e El?-_c (10.44)
llc
with d.f. = 2, Hence by (4.19), the 5.5, for testing H1 is
E5H, = SSR(a,, B,, 1 =1,...,k) - S5R(a,B)
1 | 1
c? c?
2 2
| 111 1lle
with
d!fi- - Ek - 2 - Etk-ljl
The F-statistic for testing H1 is
ESHlfIfhrl}
SSES (H=-2k) (10.46)

and H1 is rejected at, say 5% level of significance, {f the value of
(10,46) exceeds the 95% point of F with 2{k~1) and (N-2k) d.f, If

8o, let us test HE‘ The revised model, subject to “2 is

Vg = oy ¥Blx - X)) +oe (10.47)

11
1-1|!!I]ki j.ll"'"i“

1]
1
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and by minimizing

24 O TSN i 2 (10.48)
i;“ij = Rimg gl s

[We have used asy 8, the same notation as in (10.34) or (10.41), but

these new least squares solutions may turn out to be different from

the earlier ones and should not be confused with them] with respect

to o, and £, the normal equations are
niFi - ni“i" {i - ]-ll#!-k} tlﬂ*&g}

= q .50
C12¢ ™ 118 - (1690)

5 ? .51
Gy =Yg B =G, IC. G0:30)

and

SSR{ui. iI=], .. k2B) = i 'ni:.r_lu + ElEl:E

= In + CE /C

.52
7 171 7 S0 M1 (037

with d.f. = k + 1, as it was a full rank model. Hence, the S5.S.
for testing H, 1is

2
ESH2 = SSR{ui,ﬁl, 1=1,...,k) = Eﬂﬂﬂui,ﬁ}
2 2
L c
-p AL lZe (10.53)
i 114 1lle

with d.f. 2k = (k#l) = k = 1. The F-statistic for H

computed from EEH1 and SSE.

b
3 then can be

Example 5. For this example, we take our model as

Fyq =g * Bl = x) te, (10.54)

1- = l-lll--k= j - l,liq..lii.,

This is the same model, as (10.32) subject to I-II of the previous
éxample. In other words, if Hi would have been accepted, we shall
take (10,54) as our model. We have already found out Ssﬂfni,ﬂl of
this model in (10.52) and so the error 5.5, for this model is
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7

SSE=FE L ¢y~ - &
5 i 3-” !':-S-F.I{ui,ﬂ]
i} 2
12
= {:22“ - __ﬂ c i {1&-55}
11c
dof. » H - (k 4+ 13, (10.586)

Let us test the hypothesis
H: a, =a + Emfxt - %) ,
s L O P

where :,Sm are not specified. This hypothesis states that the group
means (x,, ui} lie on a line whose slope is En and intercept on the

¥-axis is a. Revising the model (10.54) using H, we have

v,, =a + smfii - x) + Blx

I E;J TR (10.57)

i
i = liaeusk; J = 1,....111 k
Minimizing the 5.5. of residuals of this model, with respect to the
three unknown parameters, o, Em’ g, we get the normal equations as

Ny = Na , (10.58)

-

) R T (10.59)

E

Clzc - cllcﬂ . (10.60)
The solution is
- _ — s N - - ) "ﬁ
nm ¥y By " CronfCrint F" Cpa/Cie el
The 5.5, due to regression is
SSR(a, 8_, B) = Nya + C,, B +C,, B
2
e R c )
-yl b s e (10.62)
1lm lle

with
d.f. = 3.

The 5.5. for testing H is, therefore,
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B5H = Huu:nILr\ SeR(a, O ,0)
L1l

¥
-

s '
i - 12m (10.61) ’
22 C
11m
with

defe = (k +1) =3 =k - 2,

The F-statistic for testing H can then be calculated from (10.63)
and (10.54).

(10.54) tells us that k regression lines have a common glope B
or that they are parallel and, if the hypothesis H, is true, this
tells us that the group means lie on a line, whose slope is B_. Let

us now test whether these two slopes are the same. We set up

Hm: Em = B,

Since Hm consists of a single parametric function ﬂm-ﬂ. its 5.5.

can be found easily by using (4.22), rather than revising the model,
using H . The BLUE of g -8 1s, from (10.61)

#
o g e c
B -B = —2 - A (10.64)
llm 1llc
Writing (10.61) as
- _l [ = ™ — =
a O 0 Ny
M
. 1
B = |0 Cl1m 0 L (10.65)
B _ o 0o 1
N 11e| | %3¢

and noting that Ny, Elim‘ cl!u in (10,65) are the left hand sides of
the normal equations (10.58) -(10.60) , we conclude from the prop-

erties of the normal equations (see Section 6 of Chapter 2) that
the matrix

1
I L]
uz 0 z 1 0
1lm 1
i ] 'E'—-
= 11qJ
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L -

ta the varlance-covariance matrix of a2, B , B. Hence
m

( c c

U{; —-B) = dz e S + 1 ) (10, 66)
™ 1llm lle

Therefore, the 5.5. for testing Hm is by (4.22)

2
A, (Elzm _Y12¢ )
(8 = 8) C C
< ol SRR 11m 11e i ks
[vig -35)1/o 1 pc o
m
Ciim G

with 1 d.f. and may be tested against the error 5.5. (10.55).

Example &6, Suppose Fi, ré, ?i,--;.yiz are respectively the
observations on the angles a, a', &, A', b, b", B, B', ¢, ¢', C, C'
of the triangle in the diagram below. The errors of observations
Eq1+ee1E,y, are assumed to be HI(ﬂ,uz}. Before writing the model, we

observe that, though apparently there are 12 parameters a, a',...,

Figure 1

A Triangle
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¥

4 = a', A=A" a4+ A=180, a+b+c =180,

and similarly for b, b', 8, B" and ¢, ¢', €, C'. On account of '
thege relations, there are really only two independent parameters,
which we shall take as a and b, In terms of these, the model is,

after transfering known quantities like 180° to the left side,

yp =ate, y,=ate, ¥y SR e ey

Vg = W T g Vo =B P Eg Yo m B gy T = =B 4 By,

Ty Hohim Dokl g S R BobignieRip Aok Rk Sy

¥y = a4 ¥ b+ Eq2° (10.68)

where ?1 = Fii ?E = yi, Tj = ?é — lﬂﬂl Fﬁ = Fé - lﬂﬂl
F5 = ?gi Tﬁ = Fér T? i ?5 -1ED| ?E -~ T& = 180

Yo = ¥g = 180, ¥54 = ¥ip = 180, ¥iy = ¥iys ¥yp = ¥ype (10.69)

We wish to test the hypothesis H that the triangle is equilateral '
or that a = b =c = 60. But if a = 60, b = 60, c is automatically 60

s0, the hypothesis is simply
a =60, b= 60, (10.70)

and has 2 d.f. and not 3.

Minimizing the 5.5. of residuals of (10.68), the normal equa=
tions for estimating a and b are

q, - Ba + 4b

- -

% = da s, (10.71)

TR R Bl S R Tt AT R T g T

qz - rﬁ + Fﬁ = ?? T FB = ?9 * ylﬂ s fll * le* {1ﬂ.?1}
Solving (10.71)

as= {qu - qz]fll (10.73)

b= (-q, +2q,)/12 . (10.74)
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Aso, from (10,73), (10.74), the matrlix of coefficlents of 4y+ 9 i=s
2 1
1| (10.75)
12 1 2

and is (by Section 6 of Chapter 2), the variance-covariance matrix
of ;. L. except for a multiplier u:. S0 to test the hypothesis H,
given by (10,70), we may elther etiploy (4.56) or alternatively revise
the model (10,68). We shall caleulate the §5.5. for testing 'H1 by

using both the methods. Using (4.6),

; ﬁﬂ!' o ST 3 o ! a - 60
55H = - | 12 12 4
-6 | 5 b - 60
12 12
- B(a-60)2 + B(b-60)2 + B(a-60) (b-60), (10.76)

where a, b are given by (10,73), (10.74).

The error 5.5. agalnst which this 5.5. can be teated is

12 7
SSE = L yj - SSR{a,b)
1

12 ,
s P {aql + hqa} (10.77)
1
with

dl-fi - 12-_ 2 - ].ﬂ.

Alternatively, revising the model (10,68) subject to H, that is
substituting a = b = 60 in (10,68); the new 5.5. of residuals is

(176007 + (57-60)2 + (46007 + (y, 46007 (y,-60)

+ (y,-60) + (y?+ﬁﬂ}2 + (yg+60)% + (y5+120)°
2
+ {yln+lzﬂ} + i?ll-lzﬂlz -+ fylz-llﬂjzo (10.78)

Eince there are no unknown parameters in (10,78), the question of
minimizing it does not arise and (10,78) is the conditional error
5.5, with d.f. = 12, and by (2.19),
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55H = The difference between the conditional error
5.5, flﬂ-?Ej and the unconditional error
5.5. (10.77). (10.79)

This is to be tested against SSE.
If this hypothesis is rejected we may wish teo test, whether two

of the three angles a, b, ¢ are equal. For this, we need to test

Hl; a = b;: HI: b= gt H3: a=geg,

If one of these hypothesis is acceptable, the hypothesis that the

triangle is isosceles will be acceptable. For the sake of 1llus-

tration, we shall consider HE'

1-l2 can be alternatively expressed as
b - (180 - a - b) = 0,
as ¢ = 180 - a =b. This is the same as

H2= a + 2b = 180,

The BLUE of a + 2b i3 a + 25 with a, b given by (10.73), (10.74) and
the variance of this BLUE, from {(10.75) is

V(a) + 4V(b) + 4Cov(a,b)

LR &2 . & 2
- -
1a .
The 5.5. for testing Hz is by (4.22) then
. s 2
@ Ehl}zlﬂ-ﬂ} (10.81)

with d.f. 1 and should be tested against SSE (10.77) for testing
HE' Hl and HS Can hé tested in a similar manner.

APPENDIX TO CHAPTER 3

Analysis of Observations from a Linear Model
In this appendix, we shall outline the various steps in the

systematic analysis of observations from a linear model
2
y =38 +¢g, E(g) =0, V() = 0"I, £ ~ Normal,
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when one is interested in
{a) Finding whether a given set of parametric functilons AB
where A is mxp, of rank m 1is estimable,
{b) Testing a hypothesis Hyt AB = 4,
where d is specified,
{c) Obtaining the BLUES of AB, thelr wariances and covariances
{d) Obtaining confidence intervals for AB and linear combina-
tions thereof.
From the steps we have derived in Chapters 2 and this Chapter, the
analysis will consist of the following steps.

Setep 1. Either, form the 5.5. of the residuals in the form
n

E {yi - expected value of ¥y with each Bj replaced by Bj}z
i=1

and differentiate with respect to EI.....EP. OR, form the products

X'v, X"X from X and y, to obtain the normal equations
q=58, (A-1)
where g = X'y, 5 = X'X.

Step 2. Write down n, the number of observations,and p, the number

of unknown parameters in the model.

Step 3. Replace the pumerical values of ql’qi""'qp by algebraic
quantities ql""’qp and begin to solve the equations. Usually the
equations are solved by expressing one of the unknown 8's in terms
of the others and reducing the p equations in p unknowns to p-1 in
p-1 unknowns and continuing this process. If you succeed in solving
the equations, the model is a full rank model, and a unigue solution
E - 5_31 is obtained. However, if some equations are redundant, you
may have to take suitable additional equations to get a solution,

Express vour solution as
E=5g,
obtalning 5 explicitly from coefficients of ql.....qp in the

solutions, Note that 0°§ is the "acting" variance-covariance matrix
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I'Il ¥

o f

Step 4. Find the total 5.5. F'i' Find the regression 5.85.,

- - L]

SSR(B) = q,B, + q,B, + ... +1qu ,

P

either by multiplying each left hand side q; by the corresponding
- *y

solution Bi and summing or by forming B"qT Note the d.f. of SSR(B)

are T = p - the number of linearly independent additional equations
you needed in step 3,

Step 5. Find

SSE = y'y - SSR(B), its d.f. =n - r

SSE
n=r

-
g =

= EMS (Error Mean Square).

Step 6. Take a look at the model y = X8 + £ and at the normal equa-
tions g = X8. Estimable functions are X8, SE. If you recognize AB,
the given set of parametric functions as linear combinations of X8
or X"Xé, they are obviously estimable and an estimability check is
easily ecarried out, but 1f just by inspection, this does not follow,
go to Step 7.

Step 7. Find

H=5Ss.

Check the correctness of your calculations from II1 = H. Check the

correctness of your value of r from trH = r,

Stap 8, Check vhether
AH = A,

If so, AB is estimable. If some rows of A satisfy (row of A)H =

the same row, these particular elements of AR are estimable, the
rest are not.

Step 9. If AE 1s estimable, the BLUE is @E and the variance-co-
variance matrix of AB is

(AS™A")o?
This variance-covariance matrix is found either from the

£ product
A8 A" or, in case you have observed your parametric functions are

s & oah . o

=
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linear combinations of K’EE in Step 6, vou will be able to write
\B = Linear combinations of X'X8
= AX'XE,

wvhere A will be some mxp matrix. Then

Ty

|ll_=l-.. - Aﬂ

and then the variance-covariance matrix of A8 1s also obtainable

q -—
o A5 A" = uEASh' = ﬁﬁ'ul.

Step 10. To find the 5.S5. to test the hypothesis HD‘ elther, find
the inverse of the matrix AS A' or ASA' or AA' in Step 9 above and
then

SSH, = (A8 - d)'(AS"AY)"L(Ag - 4).

i
This is usually difficult, unless AR consists of only one parametrie

function, that is m = 1. In that case, it reduces to

SSH_ = (A8 - d)2/(ASTA").

0
But if m # 1, usually it will be more convenient to "reduce" the

model y = X + £, by employing the conditions AB = d, it will be
possible to express the model in terms of fewer parameters than im
B. The reduced model may loock either as

Y=y +e
where y are the new parameters and Z is the new matrix, or it may

lack as

¥ = Zy + some known vector g + E.

In the latter case, write it as
Yt =2y + g, with y= y - g,
Note p* = the number of unknown parameters in Y.
Step 11. Write down the new normal equations for this reduced

model as
'y = 2'2Zy or Z'y* = 2'Zy' .
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Step 12, Solve the normal equations in Step 11 above, by using
additional equations, if required, in the same way as in step 3.

Let a solution be Yy and then find the new 55R, denoted by 55!{.‘0'
from

SSF.I'.:L‘.I & l'{:-‘:‘I} or l'f.’-’f'}'*},
depending on whether ¥ or ¥* is used in steps 10 and 11. The d.f.
of SSR(y) are

t* = p* - the number of independent additional

equations used in this step.

Step 13. Find the conditional SSE from

|
Cond. SSE = y*'y* - SSR(y),

if y* is used. But if y* was not necessary in Step 10, and y 1is

used, this step if not required.

Step l14. If y and not y* occurs in Step 10,

= M

EEHD = 5.5, for Hn

= SSR(B) - sSSR(y) .
Bur if If is used,

55“3 = Conditional SSE - SSE of Step 5.

Seep 15, d4.f. for ESEU are

=T =Tk

where r is glven in Step &4 and r* in Step 12.

Step 16. Find the observed value of the F-Statistic, namely
S5H_/m
0
F. = '
0 o2

Find the Fl.g{'*“'fj' the 100(1l-a)X value of F with d.f. = and a-I,
" 1f a 18 the specified level of elgnificance., 1If !ﬂ exceeds
Fl_ﬂ{-,n-:]. reject HD‘
Step 17. Scheffe's simultaneous confidence intervals for any linear

combination of parametric functions included in AB, say a'Ag 1is
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iwlated from the Tormalal
U I S S 1/2
The BIVE of the (unction 4 J?Eﬁli.ﬂt!d varlance of the BLUE = 5}
vhere § = [m F (m,n=1) &
' 1-n

the BLUE = a'Af, and estimated varlance is
i'{ﬂﬁ_ﬂ'}iaz. which can be calculated from results

in S5tep 9,

Consider the model
y o= |+
y= 5B +ce,

wvhere ¥ is Hxl, xl is NxM, g is Mxl, £ ~ H{E,uzl}. Find Ei' the

BLUE uflgl. assuming 11 to be of full rank. If however the true
mode] is

=X B+ KBy +£,

where £, is 8xl, IE is Nxs, show that El‘ obtalned earlier 1=

2
biased for El’ the bias being

ABy = Ty¥a8,

where
" L] )
Tl {lel} ' et

A =T, ,
gnd A is called the "alias' matrix.

2. Consider the model
Yo = BoXgy * Byxy, By ¥ Bax g,

+B * OBy gxg Xy b Bygxy Xo

+ Er '

12%1e%2x
MY L P T T
r = ].2.1.-1-..5 ¥

whiere E. ™ HI{U,DEJ,

Xy ™ 1, for all r,

and the values of Xy s Ky Xg 8T respectively (for r = 1,...,8)
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and

Find the BLUES of HD,B The above model can be written

lil!+.E'123.
matrix nmotation as

Y= X8 +e.
In this model, the expected value of y is a second degree polynomial
in :1,12.:3; If however, the true model consists of a polynomial
of degree d > 2, and is

L= L8 v te.,
show that the "alias' matrix defined in Exercise 1 is

- Ay
A =gRIX, .

Show that every column in HE will have a non-zero inner product
with one and enly cne column in 11.
this result on the biases in the BLUES of g

What are the consequences of

0 PpseeeaByag?
3. If in exercise 2 above, the scales of the factors X)2%g, %y are
changed and the models are now

Y= NKE e, ¥=XKB+XKB8, +¢

wvhere I]' IE are diagonal matrices, find the change in the variance
covarlance matrix of the BLUE B, and the alias matrix A.

4. Obtain the relationship between the F-Statistic for testing the

hypothesis
HD: Kg = 0,

with the likelihood ratlo criterion for the same hyputhesia.assuuing

the model

L= X8+, £ % NO,0%D)
and assuming that KB are estimable,

5. Given k full rank models,
gy = Xy *Eqqyr = 12,...,0
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I:'-.\,|'1.1.I-\.|_"'l-.
Z

F + M{0,a 1) .

l.'ﬂ\'{r_i. r_"} = 0, 1 ¢#u,
vwtain a test for the hypothesis

g = B " .. = B .

-{1) —{<) ={k)
B, In the madel,

r = XB + €, £ H{E.UEI}

b
.

r waz later found that B8

1 and EP (two elements of §) were really
the same parameters but inadvertantly, they were treated differently.
How will wou test the hypothesis

KE = d 7
(State the conditions on K under which the test is derived.)

In the model,
y = X8 + &, €n~N(0,0°T),

if the m linearly independent parametric functions KB are estimatable,

the hypothesis
H: KE = d

is tested by the quadratic form
Q= (KE - &)' (KD K THKE - @),

&
which is 12a1 with m d.f., if the hypothesis is true. KB are the

BLUES of KE.
If, however, KE is not estimable, and one still uses Q,
{a) will @ be a xzui or a non-central xzﬂi? Under what

conditions?
(b) what hypothesis, if any, can be tested by this Q7

8. In the model,
¥ = X8 + £, £VN(O,07T),

assume that the parametric functions KE are estimable, Let KB be
thelr BLUES, The F-Statistic for testing the hypothesis
H: KE = d ,
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Hypathesay

is then
" T
F o= iFi - DIR(X'X) R') (RS - d)/m
S5E/ (n=r)
where m 1s the rank of the mxp matrix, ¥, r is the rank of X and o

is the number of elements of y and S5E is the error 5.5. Suppose
EE* are some unbiased estimates of K8, other than ?i- A statistic
F* is obtained analogous to F by replacing é by g* in F and
replacing K(X'X) K' by a matrix V, where Va® is the variance-
covariance matrix of Kg*. Will F* have an F-distribution? Why not?
Will the numerator of F* be a ngz variable divided by its d.f.?

Will the numerator and dencminator be independent?
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HULTIFLE REGRESSION

1. REGRESSION

If vy, Xaw 12,---.1P are stochastic variables, with a joint dis-
tribution, the mean of the conditional distribution of ¥, given

xl.-..,xF, denoted by
Ek?fj{l'“*'xp} {ll.l}

is called the regression of v on ul,....xp. If we denote this
regression by #ixl....,xp}. it is "closest" to y among all functions

of Il""‘"p in the least squares sense, That is,
Min E{y - w{xl,...,xPHE (1.2)

occurs at ¢ = 4, dence, #fxl,*--.ﬁpi is called the "best" predictor
of y, among all functions of xl,...,xp. This result can be proved
by using the result that the expected value of a random variable is
the expected value of its conditional expectation, when certain other

variables are fixed. This can be expressed as
E(y) = E{E{ylxl,....up}}
and similarly
2 2
E{T'ﬂ'{xl.-++|xpj} - E{E[{T-w{xlpﬁ-rjxp}} Iﬂl,-..lxpl}+ {1.‘,3]

It is a well=known result that, for any random variables E, E{E_;}E
is minimum when a = E(£). Hence (1.2) will be minimized, if the
conditional expectation inside the curly brackets on the right hand
side of (1.3) is minimized for every {xl,...,up} and this will be so
if § = 4.

119
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-
In practice, howeyog ¢{h|._,_.,P] In nat known or complicated
and one may wish to minimize (1.2), not owver all functlona § of
“1 TEE .“11 1I'II| |.'|H] v oavier all I-I.H_I.:Il [ upe lﬂll:l rli- J'I.l "BEE. |xp+ T]"IE‘

linecar function of HI'""]{ thint minlmizes (1.2) will then be the
P

"best linear" predictor of y. If the regression of y on Hlu*-*-ﬂp

is in fact a linear function, then the best predictor and the best

linear predictor will both be the same. Such a situatlon occurs,

for example, 1if ¥, x]...

-iIP have a joint normal distribution.
Alternatively x,, Xgs+ee,X, may not be stochastic variables at !
all, They may be deterministic variables and y, a stochastic

variables, may have a normal distribution whose mean is a linear
function of LTEEETE A

In either case, we can write
= " e l-'ﬁ
¥y =a Boxy + Box, + L.l 4 prp + e (1.4)
3 2
where € ~ N(0,0" ). In order to estimate El' Bi”"’ﬁ , a%*, and o0,
test hypotheses about a* and f's, prediet y for a’future (Ilp---.xp}

etc., we need observations on y corresponding to various sets of

observations on fxl,...,xp}. Let the observation on ¥ corresponding

to the r-th
o r-th observation (%9 xrz,...,nrp} on {xl,...,xp} be ¥._»
{r =1,2,...,n). Then, setting

n

%y Frilxrfn g fhom Yool BY {1.5)

We can write (1.4) as

Y. = o4 El(trl - x1} + us + Ep{xrp - ;;]-+ E#iﬂl;.{l.ﬁ]

L = lgqllpn
where

A ﬂ = u.* + ﬂlxl + " e + ﬁFIp & {1'?}

The equations (1.6) can be written in the standard linear model
notation, as

I- " !"E* ¥ £' [lru]

2
where £ are NIL{O
E {0,07), ¥ 1s the vector of rl""'?u'
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1 H ;- e X -
11 -1 1p p
1 Xy =X . X, =X
21 "1 2p p
X = : {1.9)
2 El Ey
gh = FJ » B =) . S i : (1.10)
EP E_

A slight change, from what we did so far in eéarlier chaptersa, should
be noted. We hawve p+l parameters here, a, El....,EP and not p.
Further we are assuming that this is a full rank model or rank
X = p+l, because, rank X < p+l implies one or more linear relations

1
are actual physical variables with no such linear relation or

between the wvariables x .xE,...,xP. We assume that xl.xz....,xp

redundancy among them. If there is, it iz assumed that by dropping
one or more variables, we have achieved this.

2. ANALYSIS OF THE MULTIPLE REGRESSTON MODEL

Since the model (1.8) is a full rank model, all the parameters

are estimable and the BLUES &, Bl""‘ﬂp are gsolutiens of the normal

equations
X'y = (X"X)B* . {2.1)
Here, : n 0 1
"Y' = = (2.2)
T g_,_s p
L p
; % x (2.3)
fy = A 2.5
X'y [qn.ql.---.qpl. (2.4)
with o . = ~
9 = Ly_ = ny, 4q, " I yr(uri-nij F {2.5)

1 . r=]
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The elements of 2 ape called the corvected 5.5, and 5.F,

tgum of products) of obsevvations on x .
- ] :
(corrected) of v with 1-:1. The solution of (2.1) is

b 1 r] :
Eﬁ L E Ili'r !1:'«'

!CJ g

=

..,xﬂ and qq are the S.P,

(2.6)

where q 1s the pxl vector of ql....,rt]‘ only, and C -E:ii[ is the

inverse of the matrix 5 in (2.2), This means
o B ; and B = Cq .
Also, from the properties of the normal equations

V(g = o’ L) 0’

0] €
which implies that

@ is uncorrelated with &,

and

i 2 1
V(a) = —:— » V(B) = o’c = ::rz[c |

ij
Alzo,

SSR(a, B),.00,8) = BA'X'y
=~ Mg E B194
= n}i +.éti
= ny- +.E'5E
= ﬁ;g + q'Cq"’
with d.f. = p+l. Further
SSE = y'v - SS5R(a, El....,BP}
=y'y - oy’ - g'g,
= E{rf?l} - ﬁ‘ﬂ'.
with d.f. =a -1 - p,

Since o and § are uncorrelated

{(2.7)

(2.8)

{2.9)

(2.10)
(2,11)
(2.12)

(2.13)

and are linear functions of
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normal wvariables, they are independently distributed and so
ny’ = na’ and B'q = B'SR are independent.

Another consequence of the independence of o and {El.....ﬂpl is that,

if we consider the model
}r'r = 5 + Er I:E-l'”

by putting ﬂ] e R Ep = ] in {l.ﬁ}, we will get, BLUE of o = ;}

SSR(a) = nys (2.15)

and if we consider the model

Eltxrl—xl} + aasw F ﬁp{urp—xpi +te . {2.16)

by putting a = 0, we get the BLUE of § to be the same as before,
namely § = Cq and

SSR(Bse0258 ) = B'SE . (2.17)
Hence we can write (2.12) as
SSR{E,EI,.-..EP} = S5R(a) + SSE{ﬁl,---,BF] " {2.18)

whare the two components SSR{a), EER{El.....Bp} are independentlf
distributed. This was a consequence of the uncorrelatedness of o
with EJ which in turn followed from the null wectors in (2.2)., If
oné eéxamines this still further, one finds that the null vectars in
{(2.2) were a result of the fact that each of the columns from 2 to
p of X are orthogonal to the first column of X and this was achieved
by introducing the parameter a Iinstead of the parameter a* in (1.4),
by the reparametrizing transformation (1.7). The reason for doing
all this is that one is, in general more interested, in the B's
than in o,

Let us now consider some tests of hypotheses. The first

hypothesis is

s = B o = .Dl ]
Hﬂ' El EI E? (2.19)

As shown in Chapter 3, the 5.5. for testing this hypothesis is
55“.{{:. 'Ellil-i'ﬁp} ™. 533{1::.'! »

which, from (2.15) and (2.,12) is
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-

a5 R F - E - |: L] m o -‘- = 5y
{ 1 F'L]"\I 2 i:'l E v llr.l 5 {Irzm
with d.f. (p+l) = 1 = p. The statistic for the test is

Fa _£4/P

FFEIin-p—]WI {E*EIJ

vhich has the F-distribution with p and n-p-1 d.f. if H, is true,

Usually, the sums of squares used in this test are exhibited in the

following wav.

Tahle 4.1
Source d.f. 5.5. M.5. F
Regressiom of p Eﬂﬂ EEEIP E{ﬂfp
¥ on 11”"‘:;:: M5E
Error a-p-1 +55E HSE
Total(corrected) n-1 EfyiJF}z

The 5.5. for Error is obtained, using (2,13), as a difference of
n —_ &
the total "corrected" S.S. I(y,~y)" and B'g and this fact is denoted
1 :
by the symbol ¥. 1If this hypothesis is not rejected, it means that

the data indicates that 11,:2,...,::? are no good as predictors of y.
The quanticy 20
23 SSR AL
Total corrected 5.5. - 2
L{y;=¥)

is called the square of the multiple correlation coefficient between

(2.22)

y and {:1,12.,..,:?} in the sample and 1s a measure of the strength
of association between y and {:1.....1:‘..‘.'. If H.  is true, from (2.21)
end (2.22) we find that

2
ﬂ-Ptl é 1_:!_ (2.23)
is distributed as an F with p and n-p-1 d.f, The distribution of Rz
under Iu can be found from this. The non-null distribution of nz,
vhen ',Il\‘:l i not true, has aleo been found both when xl....,xp are
fixed and when they have s normal distribution (see for example
Kshirsagar [40]).

Alternative expressions for I2 are as follows:

0
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L{vy -v) q’ |

| §

SH = 1 -____*_,*_4L, . (2.24)
1;|1 g

This i= the matrix of the corrected 5.5. and 5.P. of all the

variables v as well az x ..,._;P_ Then, from (1.3.11),

: n’ - 2 1
|s*| = |§]{ i(vr—r} - g's q} (2.25)
5*! . __2 ‘l
= —{YT ¥) B'qg . (2.26)
Hence
1 — g 5]
= - kil = " (2.27)
(Zly_-»)!s]
y F
Also, if the elements of S*-l are denoted by s*ij, it is evident
that 1 =
. 2
1 -8 = e, ewll (2.28)

vhere HTI is the element in the first row and colurm of 5%,

Even if all the £'s are not null, one or more of the B'e ecould

e null, If we wish to test the hypothesis

HI: El = 0 ,
the 5.5. due to H
&
= W (2.29)
ii

because Ei is the BLUE of Ej and from (2.9), cllui is the variance
of Ei* The test statistic for H1 is, therefora,
.
I‘:;l

1 will be (by 3.4.22)

¥ /1
SSE/ (n-p-1) (2.30)

which hae the F distribution with 1 and n=-p=1 d.f. If the hypothesis

is Ei = 5 gpecified quanticy Hf, the above statlstic will have to be

modified by replacing Bl by Ei-ﬁﬂ

1 Instead of (2.30), one can use
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({noting = SSEfM(n=-p=11)
i (Z.31)
F s
Ty i
[ i
which has the t=distribution with n- B o A |I'||.II'1_—|.]-. confi-
dence inteérval for B wil}
B, + t I RN A (2.32)
i = “1-a/2 I §
where Ll—flr"-lp-]l iz defined by
Prohi{t *1 s km=p=1)1= 1 = 1 i (2.33)
e —r ;

with t having the t-distribution of n-p-1 d4.f. (2.32) follows from

L4:33) because (2.33) implies that
F"'“"{—'-l_._ 2'.11—;*-]" L, e ST _I._,"'.1—;'—!:-.l = ] - a,
Let us now consider the hypothesis

Hot By = B, = oo =8 = a specified quantity 8

. P i
If we modify the model (1.6) using HI' the new model 1s
y.=a+By (2-2) +¢c, (r=1,...,n) (2.34)
where =
E. "X + X 2 ¥ wse * ”:p and z = i;rfn . (2,315)

But since Eﬂ and z_ are known, the model should strictly be written

as
y: =a+c, (r = 1,...,0), (2.36)
where
MR A ﬁutzr-Eh. (2.37)
Minimizing
n - E
3 [y; - a) |, (2.38)
rm]

which is the 5.5. of residuals in the revised model (2.35), we find

Qn
; f
= [ yv'/n
1 T

|
L]

-
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= v {using (2.37)., (2.3%)
e condftional error 5.5., when H, is true, is thus the minimum
valuwe of (2.37), namely

] an

£ ty! - 2

r
r=]

. Efyr -V - Bylz, - ik

: ” 2 = =2
. l{?r - yzl - EEBE (yr - ?}{Er -z) + Egt{:r = z)

r ¥ T

£ 732 - 28 (q. + ) + B2 : i (2.40)
= ey - F - q & ow o +q + 5 W -

r T 0’1 P Di-l ju1 i)

using (2.3) and (2.5).
The required 5.5, for testing H2 iz by (3.4.10) the difference
hetween the conditional error $.5. (2.39) and the unconditional

crror 5.5. (2.13) and is thus given by

2
S5H, = B'q - 28 £ q, + B8 P b (2.41)
2 07 M 0] 4o 1

and has p d.f. This can be tested against the S5E in the usual way.
On the contrary, 1if ﬁg is not specified and we wish to test the

hypothesis

H E-H'-lil-ﬂl

3" ¥y 2 p

the revised model subject to H3 is

Hf = & T Hizr'Ej + Er: (r = 1,2, .00,00) (2.52}

where £ is the common but unknown value of the ﬂi'n. Minimizing
n " [}
g -[:,rr - - E{ar-z}l}E
re=]
L

with respect te «,f, the normal equations are

e i

ny = ni, {El'ﬂj'}
. o 2 =\ 2
; X {mr—:} - f E{:rhz} 2 (2,44}

The solution is

.Y

a =y , E - Eyrtur-;}frfzr-iﬁz (2.45)
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and hence

S5R(a,B) = nva + 8 Fy (g =z}
T T ]
A &y - 3
- ny? + 820 (2 P, (2.44)
T I

with & d.f., as we have two unknown parameters. Hence by (3.4.19),

55H

3 S5R(a, B,,..s,8 } = 55R{a,B)

P
= 8'9 - 8°¢(z.~2)>

. F g P

= 8'q - (L qi} f(L L s .}, (2.47)
e 1 i§=1 iy

due to (2.44) and (2.3), (2.4). This has (p+1)-2 = p-1 d.f., This

can then be tested against the SSE by the F-test.

-

H

¥

Finally, let us test the hypothesis

H&= El + Hz + ... + BP = a specified quantity d.

Since Hb consists of only a single parametric function, it is

convenient to use (3.4.22) for finding SSH First we observe that

'ﬁ-l

E Ei is the BLUE of Eﬂi and its variance is, by (2.9)
P.ﬁ
V(IB,) = L I :”ui : (2.48)
1 ij=1
EE'DTJE - 2
{EHi - d)
EEHa B Ea———— (2.49)
EEci
15

with 1 d.f. This can be tested, then against 55E as usual,

From Section 6 of Chapter 3, the simultaneous 100{1=a)X Scheffe's

confidence intervals for any linear function A'8 of the 8's are

given by i

A'E + {PFlnu{P.n-P“l}ifﬂﬁpzllfz i (2.50)
Since

a + Elf31¥;i] + .00 # ﬂp{“p_;ﬁ} (2.51)

ie the "best" predictor of y, corresponding to nl....,xp, the
predicted mean value of y (as (2.50) is the conditional mean of y,
vhen xl"""p are fixed, in a regression situation) for a future

experiment which has x =x}, xzﬂig,---.xp-:; is estimated by
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R . ; s -
¥ = a4+ f,(x )+ . +-|!tl!htp xp:l . (2.52)
whiere "y !J‘---.HP wore defined by (1.5) and are the means of the n
abserval long o ”I""'xp In the data set used to estimate a, 51,---1

FP amd have nothing to do with ITI+.-'IF' The wvariance of this

crtimate of the mean of y 1a
V{‘*} - Via : - a s
y Via + rltn] xl} o T - ﬂp{x; xp}}
= V{A'gw) (2.53)

Wl re

1' L r I* I?—;l,*..,l!;";p.].

By (2.8), therefore,

V(y*) = A'W(A%)A
1 p .

2 -
- o%(= + izjfls:”(x;-xi:l{x?le}. (2.54)

Analogous to (2,32), a 100(1-a)% confidence interval for the

predicted mean,

— . ke i1 ] - ..-'-
& h{y|:1 XFraeasx :;} a +'&ﬁxf xl} SR, Epfx; :p)

p
(2.55)

is given by
o tl_{&fz}tn-p-lljzpfy*} ! (2.56)

where

;t;*} = gatimate of ?{;*} of (2,53),

and is obtained by replacing uz by ;2 = SSE/(n=p=1).

If 11'“3"*"#F are set at xi...;.:; and the experiment that
penerates y is performed, a value of y will be observed. If this
cxperiment is performed an infinite number of times, keeping x¥,...,
H; the same, a distribution of values of y will be genarfted. The
mean of this distribution is (2.54) and is estimated by ¥* and its
confidence interval is (2.55). But, if the experiment is not
performed an infinite number of times, but only once, we shall get
only an observation from this distribution and it will be

¥* + observational error c#
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and since €* has a variance & i+ {e customary to modify the

R T (- e~ (2.57)

i=(a/) L,
vhen one vishes to predict a future observation y* + %, rather thss

the ==an v¥ pf all the possihle observationsg in the distributinﬂ,

i)

BE: 3, =0, (3.1)

where £, the vector of regression coefficients attached to e Rl L

-1 (3.2)
| Xa = .

Lez 5 and ifs inverse C be also partiticned accordingly as

- =

ﬁ
|
|
1

s 5 o I C m
mii 11 lli ; c= | 1L | 12 (3.3)
| . I
Syy ! Szgj pm {F21 Coz| Pm |
| = m p—m

The normal equations, vhen a,8, that is a,Y, and X, are fitrted, are
given by (2.1) and using (3.3), they can also be writtem as

oy =ma, (3.4)
Sa1) = Sy * 5oL (3.5)
S¢2) " 531y ¥ B » (3.6)

vhere 9¢1)* S¢z) °re parts of g of (2.6) defined by

-
gm 3 | " (3.7)
Lim iy - !

From (3.5), ’

_1 -
X "5 4y - 51 - (3.8)
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Note that EIi exists, as the matrix 5* and hence 5 are non-singular

a5 the model is a full rank model.
Using (3.8) in (3.6), we eliminate Tl and obtain

9z = 5n 11(5c1} z* )+ 8 sz

-l =
21°113¢1) = S22.173 » (3.9)

Qgzy = 8

where

5 5. 8 1g (3.10)

2241 " ®227%91%11519
{3.9) are thus the reduced normal equations, obtained by eliminating

1 (a2 was automatically eliminated, as it did not occur in 3§
(3.6)). The solution of (3.9) is

£ = _l _1
Xp = 533.1%4¢2 52151291y’
We shall now prove that the 5.5. for testing the hypothesis H (which

(3.11)

is called a subhypothesis because X, 1s a subset of @, the vector
of all regression coefficients) is the sum of products of the left
hand sides of the "reduced" normal equations (3.9) with the corre—
sponding solutions (3.11). That is,

_1 &
H=laey) = 555119¢1y' 1,

= ¥3552.1Y5 (3.12)
To prove this, we observe that, by (3.2.20),
SsH = v1 {15 V(r,) 17y, (3.13)
]
and from (2.6.4)
1 2
Viy,) =« Cap s
where
. %2 "
t - & fjll'ﬁ']
“n | €,

Hence, from (3.13)

o n' _1.*.
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But since,

q = ]

11 51: Lll | EIE
S = -__+-_ and C = I )
5 5

I S T 21 22| .

are inverses of each other, by the rule of the inverse of a part of

inverse

(3.16)

[This result can be proved easily, by noting that

SC = 1
or

c O nlpy = 1

111t 932%9

C & =
M1t t Syplas = 0
) B B R T
By finding 512 from the middle equation and substituting it in the
last, (3.16) follows.]
Alternatively, from (3.4.10),

SSH = SSR{a,B) - SSR{H,Iii
= {ny’ +g's g} - SSR(a, y ). C(aan

When only o, ¥, are included in the model and 15 is set equal to

the null vector in accordance with H, the revised model is

S Blfxrl - xll o TR Hm{Irn - xh} + e

r
r=1,...,0
and the new normal equations are
oy = pak (3.18)
) © Sayy* (3.19)

where we have used * to distinguish the new least squares seolutions

-

from the old ones with only
(3.19) is

on them. The solution to (3.18),

o —— i

- [ L _l '
eb.=y 5 X = E580) - 0
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Meroiore,
:"5.."-"&{-.1.1]] - pya® 4 H‘Eijrf

=2 . ~1
- ny +_:1{”.'-”EE” . (3.21)

Consequently, from (3,17)

u gt -'I -1_
55H = ﬂ'ﬂ q - H‘E 1}5115{11 . (3.22)
Wi now use the forsula

-1 | s 5 =1

-1 O . | .
1t St 58855 1151280241 (3.23)
=5 =1 o |

= 5345111 22+1

= 5

5

-] =1 -1

= X35;2.1Y5 » (3.24)
which agrees with (3.12). The d.f. of S5H are obviously
d.f. of SSR(x,8) - d.f. of SSR(a,y )
=p=-m. (3.25)

The F-test for testing H uses the statistic

SSH/ (p—m)
SSEf{n-r) ’

{3.26)

a8 usual,
The hypothesis 5.5., S58H, to test X, " 0 is called the S.5. due
Lo Yps €liminating y, OR it is also sometimes designated as

5.5. due to 1; adjusted for Iy

This terminology results from the fact th't.ll was eliminated from
the normal equations (3.5), (3.6) and reduced equations only in X;
were derived and from these the §.5. is obtained by the customary
rule of multiplying the left hand sides of normal equations by their
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solutions. Another explanation for this terminology is that, the

left hand side q':_.” of the normal efquationa frl-..ﬁ}-, cnrreupnnding [«
Y14s Was "adjusted" to

1y ~ "";!151:115(1}
in (3.9), to get rid of X; and these adjusted quantities are used g4
obtain 55H in (3.24). Those familiar with multivariate normal dis—
tribution and its properties will readily see that q, that 1is Efl}
and 92 have a multivariate normal distribution (being linear
functions of normal variables ¥} and that the regression of 3{2} on

9.qy 1=

Sjly * Sy + $p3571 (@01y7Sy51 = S)p))
and hence when 1{2} is adjusted for 91y ve have

9z - 111(11] 522.11p
which does not involwve ¥, at all. It is thus_g{z} that is adjusted
for 913 but this description is transferred from 3{2}.5{1) to
15+ ¥y and we describe S5H as the S. E due to Y, adjusted for Tq-

On the contrary, the term-ﬂ{lj 113{1} in (3.21), obtained from
the normal equations (3.19), is called 5.5. due to Y 1gnnr1ngliﬂ

or 5.5. due to Yy unadjusted because, in obtaining (3.19), Y, was set
equal to 0 or ignored in the model.
From (3.22), we have thus the identity

] =1 - ] -1
2% °9 7 403)5),4¢p) *+ SSH
OR
SEH(EI_.---pBP} - 515, dUt Eo 11 iﬂnnring 12

+ 5,5, due to Xy eliminating 1 (3.27)

OR, alternatively

5.5, due to ¥y unadjusted

+ 5.8, due to Xy adjusted for Ty (E.EB]l

It should be noted that the 5.5, due ro s adjuarad fqr_I is the
npprnprigu §.8. for I'LI'-II:-".'II; 12 - U‘ and ptﬂbl‘hl}' the easiest way to
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whtadn it fa te devive It na
‘%'-'H:]......r-l_l'II - 5.8, due to 1y fgnoring 1ye (3.2%)

ingtead of the hypothesls Hi 1 = 0, we want to teat the

H*: %, = 0 (3.30)

interchanging the role of Yy and X3 in the above analysis we find

SEH* = SSR(B, J0ue 8 ) =
(8,4 ,qp} S5R(Y,),

which im

Wi . ¥ -1
1% 37 409)%22%(2)°
= Regression 5.5. when all A's are included
= 5.5. due to y, ignoring y, . (3.31)

Jther alternative expressions for SSH* are

SSH* = vi1yS11.27 (1) (3.32)
ﬁl -] ®
- I{l}clll{l] also (3.33)

SEH® will be designated as 5.5, due to 1, eliminating X, or 5.5. due
to 1; adjusted for Xae It has m d.£.

However, 1f 55H and 55E are already found out, one need not use
£3.31) or (3.32) or (3.33) to find SSH*. There 1s an easier way.

Observe that, from (3.28)
y'y = SS5E + sshit.ll.....ﬁpi
= SSE + SSR(a) + 55!{51_..*,ﬁp}
= SSE + SSR(a) + 5.5, due to X, {unad justed)
+ 5.5, due to y, (adjusted). (3.34)
Interchanging the roles of 1 and 1z
y'y = SS5E + 55R{s) + 85.5. due to 1q (unadj.)
+ 5.5, due to y, (adjusted) . {3.35)

Equating (3.34) and (3.35), we find 5.5, due to 1 {adjusted)
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= X'y - SSR(a) - SSE - 5.5, due to Y, (unadjusted)

= ] ...r_,_.-.- - S55F - 5.5. due to 15 (unadjusted) . [1..'

ne fellowing tables show all these 5.5. and indicate the .Etm*
computing them, with the help of the notation t+, which stands for
"obtained by substraction" and +, which stands for cartied over fra

one table to the other,

Table 4.2
Source | d.£. 5.5, 5.8, d.f. Source
¥, (umadj.) - ) S‘_l t
X . 21)%11%1) "X (ad))
) ) -1 =1 -1
¥, (adj.) -z q'5 "gq-q 3115_{” 3::2}5223{2}! p=m | ¥, (unadj.)
Error n=p=1 + + n=p=1| Error
Total o-1 b E—n}_rz + n=-1 Total
{corrected) (corrected) |

It should once again be remembered that 5.5. due to 1, (adj.) 1a co
be used for testing H and 5.5. due to ¥y (adj.) is to be used for HW,
The unadjusted 5.5. are not useful for testing but are needed to

i —

obtain the adjusted 5.5. in the process of computation.

4. ORTHOGONALITY

The results in the last section raises the question,
When will the adjusted and unadjusted 5.5, for
I or for 1o be the same?

The adjusted 5.5, for y, :’.: 12'521_112 by (3.24) and the
unadjusted S5.5. for y, is 552}522%(” [from (3.21) with interchange
of 1 and -T-I]" Substituting for Ig» from (3.11), and equating the

two, we get an identity in g,y and g.,,, from which it follows that,
the unadjusted and adjusted 5.5, for X, are the same if

S, = 0 (4.1)
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and conversly if S_. = 0, the adjusted and unadjusted 5.5. for 1

21
are also the same. (4.1) implies that columms ? to =l of X given

by (1.9) are orthogonal to columns mt? to p+l. It also implies
that, (from (2.9))

EUV{iltizj = HICIZ
=0, (4.2)

because if 511 = 0

(5, ©
5 - {'ﬁ'lj}
| 4] | 522

and, therefore,

-1

11 r 0 |

. (4.4)

and so, CIE (from (3.14)) is also null,

In such a situation, the two groups of parameters 1 and b )
are said to be orthogonal. What are orthogonal are columns of X
corresponding to Iy» Xp» OR, BLUES of y, and Y, but this descriptien
is transferred to Y¥y+Y, and they are called orthogonal. A conse-
quence of this is that the adjusted and unadjusted 5.5. of Xy of of
I, are the same and a single table instead of the two in Section 3
suffices to test either H or H#*,

We had assumed X to be of full rank. In general, if X is not
full rank, we shall define X, and y, (two subsets of g, the vector
of parameters) to be orthogonal if the BLUE of any estimable linear
function involving ¥, only is orthogonal to the BLUE of any estimable
linear function involving Y, only. We will have to replace H by
the hypothesis that all estimable linear functions of 1, are null
and H* by the hypothesis that all estimable linear functions of X,
are null and then one can show that 55H and SSH*, in this case, add

up to S5R(B) and one table will be adequate to test both H and H*.

- =1 4 AW EEE
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Further 55H can bhe tound §rom

SSRIRY = S5R{v.)
X7 "’.
vhere S5R{y I" means the repregsion 5.5. wvhen IE is set to be ﬂ

in the model (or ignored) and gimilarly for I.].

CURVILINEAR REGRESSION

As Temarked earlier, the regression of y on a single variable
x is the mean of the conditional distribution of ¥, given x. If
this is a linear function of x, well and good. If not, there are
two possibilities. It may be a polynomial in x. Or, it may not be
a polynomial in x but for the sake of simplicity, we decide to

approximate it by a polynomial of degree p, say. In either case,
the model will be

= z P
Yy ek fow gl + L+ pri +€; 5 {5.1)
1 = 1.2, 04,0

vhere [Fi;x }, ({1 =1,...,n) are the observations on y and x. This
presents no difficulty in estimating the parameters of ﬂ,El,....ﬂP
or testing hypotheses about them, or finding confidence intervals.
The analysis follows the same methods as in the case of a general

linear model with full rank, if we observe that (5.1) can be written

as

y =X +e,
with — -
2 P
1 %y %) PR, X
2 p
xm |1 % X3 ... X (5.2)
1 ¥ :2 - x" 2
| n n n

The real difficulty, however, 1s that ona seldom knows the
degree p of the polynomial,

which gives a good approximation to the
actual regression of ¥y on x.

In that case, one has to go on taking

p =1 first, then p = 2, then p = 3 and so on and at each stage
w
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examining whether the additlional term Introduced Into the model was
worthwhile or not, by testing the significance of the new parameter

introduced at each stage. The matrix X and X"X and its inverse

S |
(X'¥) 7, all increase in size by 1 at each stage and the inverse

IE‘H3_1+ must be found at each stage afresh to test the significance
of the new f introduced. With the use of electronic computers, this
iz mot a difficult taks at all bur earlier, when computers were not
in wse, this task was made easier by what are known as orthogonal

polynomials in x. We shall consider them in the next section.

&, OETHOGONAL POLYNOMIALS

Any polynomial of degree k, say

A k

54 + Elr . R Ekx (6.1)
can be expressed as

'JEPU{H} + ulPl{I] + s W + ERFE{H} {E-I-z}

where P[[xj is a polynomial of degree r in x (r = 0,1,...,k...).

1f now we have a model,

k
y, = By ¥ Bx, + os HBx tey (6.3)

(L = 1,000,0)
we can rewrite it as
P "n:-?n{“:]' + “lpl'[’*t]' + ... * u.k'l’hfxi] + £y (6.4)
{(1{ = 1,...,n).

This is only a reparametrization from f's to a's, However, If the

polynomiala Pr{x} are now 6o chosen that

n
3 - 11 r Bl 6.5
’iJPrixllFH{uil 6, r¢s, (all r,s,) (6.5)

we shall find that (6.4) 18 in matrix form,

¥y o= Xu e, {6.6)
where
o s g
X' = diagl © Polx), L P (x),..., L Fk{xl}! . (6.7)
{=1 i=1 i=1
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Therel vre,

1

o= (X' 7K'y (6.8)
vields
- 1 [} ] 2 {Eﬂ
a = F v P {x ) EP(x) , i
T f=] 1 r 1 fmi il
rw (1.2,0.0.K)
and
- z 2 o
Via) = o" diag EIIEPD{x dovanadEP L, )Y W (6.10)
{ i 1 ' |

Essentially, what we have done here is that instead of the matrix X

corresponding to (6.3), we have reparametrized to obtain a new

matrix X from (6.4), such that its columns are mutually orthogonal

and this results in a diagonal form for X'X and thereby the BLUES of
]

a 's are uncorrelated as seen by (6,10).

The 5.5. due to regression is

= = '
ESH(ul,...,uk] aX'y
Tl g i
auirﬂ{xi} + .ee + akikaxi} (6.11)

with d.f. (k#l) and SSE, which we shall denote by SEE{ul,....uk},

rather than SSE only, for reasons which shall be clear later, is

Doy ka omn o,
SSEln FRIR | Y = T ¥, = I{a EP (x I {E.III
0 k 1 1 et T g ¥ i

with d.f. n-(k+l).

A test of significance of @, , that is a test for the hypothesis

uk = 0 {8 provided by

i 2
luk thixi}]f[ESSE(uu...-,uk]f{n-k-lil (6.13)
vhich has an F=-distribution with 1, n-k-1 d.f. 1iF a, = 0.

The advantage of this method is that, 1f we decide to enlarge
the model by having a polynomial of degree (k+l) instead of k, we
simply add cne more term “h+1pk+1{“1} to (6.4), with Py (%)
satisfying (6.5), Then (6.9) holds even for r = k#l, as (x'x]'l is
the same [x'x}ul as before, with the addition of one more diagonal

term IIIPE+1ixl] to it in (6.10). (6,11} is also similarly increased
i

o pE e — i

|~i
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hvﬂguﬂ m;ru term ;i+lﬁri+1{xi} and SSE{uﬂ,....nk+1} - 555(“0""'”k}
- 1k+1EPk+l{xi}' The d.f. of SSR and ESEnare now k+l and n=k=2. In
otherwords, all previous calculations of as S5R, S5E are now invalid
only minor additions or subtractions or additional calculations are
needed. This would not have been the case 1f X'X 1s not diagonal.
We would have been required to evaluate {x‘x}‘l and all the BLUES of
HU“"'ﬂk again. 5o also S5R and SS5E need to be calculated afresh,
as 1f we are starting frfm a scratch. But with orthogonal poly-
nomials P(x), ﬁﬂ'nl""’uk a:g pre;ervtd and we need only to find
ey and its contributions uk+IEPk+IExi} to 55R and 55E and the

changed d.f. Now we may test @4y = 0 and 1if this 1s rejected, we

can proceed to the (k+2)-th degree, if we feel a better approxima-
tion can be achieved to the true regression of y or x. We can pro-
ceed sequentially starting from k = 0,1,2,..., at each stage testing
Bhadyafayeaay ELC. and stopping when we find no significant a's are
being added.
The question remains of determining Pr{x}'a satisfying (6.5).

From (6.5), it has been shown that [37] when X aXyyeea, X ATE equi-
distant and take the values 0,1,2,...,n=1, the orthogonal poelynomials

satisfy the recurrence relation

P.(E) = &P, (E) - lPthE(I;’.}. (r= 28 0000) {6.14)
where

Eom oy Lzl , (6.15)

e
and

PolE) = 1, P,(E) = € . (6.17)

The Fr{ﬁ] thus can be obtained recursively. The values of Priti}
are tabulated for each n and for each r = 0,1,...,n~1, when :i-l-l
({f=1,...,n). The tables give values of ﬁr{!i] = lr’nPr{xi},

where is a constant depending on r and n such that &4 P (x )
r,n r;n r 1

is Integral for all 1. This lr = is also tabulated and so also

n 9 ’
1
151[1r.“FrIKl}] . If we designate lr.uPrixi} by ¢rf11}. the formulae
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£

(6.9), (6.11), LB 12, (6,13 are changed as follows
K n
= ¥ ow oA rat
v 1.ni'_.lx1"1":?‘1”"'::'{’{1}' {E*‘
k ., n ) 9
-\.""“':H ! PO A = F l ; ] !
I“L'l ~|11‘.| L ['::_ A drl{xi],-"lr'n] »
r=0 i=]
CSE = Z
e 'q.'-"l:li.l-|-||'|1_l'!| = & 'i'i — QER{.‘:'-D. r|:-|:n:| ™
and :
i P
oL Pk{:-:i}
i » {6.21)
i |
‘-k .hSSE{nl' e ,Dk};{ﬂ‘k-l]

When XyaeeeyX  are not equidistant, there are not simpler formulae

gnr Fr{x], Explicit expressions for them in terms of the moments
.

L%, (s = 0,1,2,...) are given in the literature. But with the
=;%ailahiliry of electronic computers, this has ceased to be of any
practical utility as what we gain by the use of orthogonal poly-
nomials is lest in the labor of finding them in the non-equidistant
case and computer programs for inverting {K'K}-l, at';very stage

may be easier.
7. ERESPONSE SURFACE METHODOLOGY

In the last section, we considered a curvilinear regression of y
on only one variable x. For a more general situation, when we have
k factors and XysKagreanady represent the levels of these k factors
useéd in an experiment and if the true regression of y on Il""‘“k
or its approximation is a polynomial of a certain degree d in these,
the model will be

Yoo 00X aX gaeanaXy ) + € (7.1)

r=J1,...,n

where ¢{Il,:z....,xk} is a polynomial of degree d in x vaeeyX, and

¢{“rl*""x:kj is its value when S Rl TR TRL X+ In practice,
values of d greater than 2 or 3 are seldom used., If, for example

d = 2, ¢ may be expressed as

k k. s k
B, + LB, x, + EIB x; + L IB .x x ., 7.2)
B W SR e S (

el

e

i iy
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*111.-¢-iitl iz called the response surface and the BLUES of the

rezsponee surface coefficients ED' Bi. 1] can be found Iim a

11’ Bij
straight forward way by using the general linear model theory, after

cxpressing (7.1) in the form

vy o= X8 +¢ (7.3)

e L

one can easily see that in this case the matrix X can be written an

(when d = 2}
(E_,IoIR] , ' (7.4)

wvhere E]_.1 iz a column vector of unit elements,

1 F2 v X
D = ¥a1 Faa v Ry (7.5)
*al Kn! e Xk

and the elements of R correspond to ;;1u¢a of

z

ri? Iri“rj

(7.6)

for r= 1,2,.0un; 1,0 =1,.0..k, 19 1.

If D is given, R can be written ecasily from its columns,

The properties of BLUES of the B's and of the predicted y
naturally depend on the entire X but once D is chosen, R is auto-
mitically detérmined. Hence D must be carefully chosen by an experi-
menter so that the resulting X consisting of E, D and R yields of
"good" X'X. Determining D and determining optimum experimental
conditions Xppeens¥y to achieve maximum (or minimum) response y are
some of the problem sssociated with this response surface methodology
and one can find details in Myers [49]. D 1is called the design
mitrix. One obvious "good" X is one for which X'X is diagonal, so
that the BLUES are orthogonal. There are other "desirable" prop—
erties such as rotatability which are discussed in the reference

méntioned above,
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DISCRIMIMANT AMALYSIS

if there are two groups of populatlions and measurements are
taken on p correlated characters x]'HI""‘“p for “1 individuals
from the first group and for n, individuals from the second group,
we can "formally" carry out a multiple regression analysis of
variable y which takes values 0 and 1 according as an individual

comes from the first group or the second, assuming a model

- - (8.1)
Fr a4+ h]xrl + ... + ﬂpxtp + Er

r = 1.,2,::4,0

and estimate EI""'Ep as indicated in section 2. The reason for
using the word "formally' is that strictly speaking we are not
justified in doing this as the standard assumptions in the general
linear model that y is normally distributed and “1""’Ip are fixzed
are not true. In fact, the reverse is true, that y is not a
stochastic variable at all and ul,...,xp are stochastic variables,

possibly having a multivariate normal distribution.

1t has, however, been shown (see for example Kshirsagar [40]),
that even if this is so, the F-tests for testing By = ... ¥ ﬂp =0,
or testing a subhypothesis & ., = ... = EP = 0, or only B, = 0 are
g2ll valid if we assume normality for KysreopXy e The regression
a4 Bixy + ... ¥ BFKF is called, in such a situation, the diseri-
minant function between the two groups and can be used to allocate
2 new individual te one or the other group. The intuitive reason
behind this is that y is the indicator variable for the two EToups

and if it is not known, we use the regressiom o + ﬂlxl + aue + B X,

PP
as its best predictor. The B's in this case are called discriminant

function coefficlents., However, it should be noted chat they are

not unique as we can very well define vy to be A

1 for the first group
and 1

2 for the second group instead of 0 and 1 and get a new set of

E's, It can be shown that ratios of B's are unique, Questions of

chance of misclassification using the regression function for
gllocating & new Individual arise and more details of this and

other aspects of discriminant analysis can be found in books on

e B TR
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multivariate analysig. That, discriminant analysis can be carried
out formally as regression analysis was first noted by Fisher and
this idea was further exploited by Bartlett and Williams for discri-

minating among several groups.
3, TLLUSTRATIVE EXAMPLES

Example 1.
As an illustration of the computations inveolved in a multiple

regression, consider the following data.

¥ “l xz 13
16.55 4.3 62 78
18,25 4.5 68 78
15,640 4.3 74 78
17.85 6.1 7l 78
18.70 5.6 78 78
18.55 5.6 B5 77
17.55 6.1 69 76
17.80 5.5 76 76
17.70 5.0 83 76
18.45 5.6 70 76
17.95 %1 77 76
19.10 4.8 a4 75
14.75 3.8 63 77
16.40 1.4 70 76
17.75 3.6 77 73
16,70 3.9 63 73
17.45 2.1 77 70
17.75 5.9 7 70
15.55 4.9 63 68
15.10 4.6 70 68
14,15 4.8 71 LT
15.35% 4.9 56 Eﬁ
15.65 5.1 63 65

19.45 5.4 70 63
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LY ‘.'i] '!l-:: IJ

17.05 f,5 49 62

18.05 6.8 56 60 ’
17.60 6.2 63 60 . -

The number of observations is 27. The matrix of the corrected 5.9

and 3.P. of the variables %1%, %, COmEs out as

50,227 =55, 4B9 =120.23
5= 65,489  4097.33 1561.11
(-120.230  1561.11 1943.70 | .

The corrected 5.P, of y with xl.xz.:j are respectively
q; = 27.3193,

q, = 236,078,

q, = 66.193 .

The inverse of the matrix 5 above is

C=10"% ["30,768.9 -336.26  2173.31 ]

=  336.26 355.353 -306.206

The regression coefficients (estimated) attached to x

17 %1%, in the

regression of y on x,,%x,,x, are, therefore
3 15721 % ’

-
1| =19
- Ul 9

93

0.9051
0.05444
0.04632 .

Ty T TOH

The means of the variables vy, :1,:1,33 are

y = 17.1481

——

——

.
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£] = 5.,0925

;2 = §9,7777

E] = 71.9259 .
The estimated regression line is therefore
y = 17,1481 + 0.9051(x,~5.0925)
+ 0.05444(x,-69.7777)
+ 0.04632(x,-71.9259),

The §5.5. due to regression is

E Eiqi = 40.64 with 3 d.f., and the total corrected 5.5.
1
for ¥ is
2
2 (Zy,)
[Fi T amppter W 48,08 .

The analysis of variance table is given below,

Table 4.3
Analysis of Variance

Source d.f. S.5. M.S. F
Regression i 40.64 13.55 42,34
Error 23 7,44 0,32

Total 26 48.08

The F-value is obviously significant at the 51 level,
Let us now teat the hypothesis Ej = 0, By (4.2.30), the F-ratio

for this is ~9
fﬂjfESJJfl

1,23~ SEE/(n-p-1)

F

(.04632)°/10"%(894.847)
0.32

- Eijg?ﬁ .

This is not significant at the 5% level and the hypothesis cannot be
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rejected.

Example 2.

LConsider the two linear models,
Ve " e+ B8 (x %) +e, r=1l,...,n (9.1)

and

yL=a' + B(x-x") + €', r=1,...,0 (9.2) ¢
wvhere x = Ixtfn, x' = Ex;fn', and € E; are Hlfﬂ,ﬂz}. These
correspond to observations from twe different groups, n from one
and n'" from the other and the regression lines, for the two groups,
are

y = a + B(x=x) (9.3)

y = a' + B(x-x') . |

They are parallel, as £ is the same for both. Suppose we wish to
estimate the distance between these two parallel lines, measured

parallel to the y-axis and obtain a confidence interval for it,

M

g

et ¥y =a + plx-x

¥y =a' +a{x-x")

X = axis
Figure 2
Parallel Regressions




Section 9. llustrat ive Examplons L&

Conslder a point A on one line and another point B on the other llne

such that, they have the same x co-ordinatea and thelr y coordinaton

are v, oand v We have, from (9,3) and {9.4),

A B’

¥, ™ a + Hﬂxﬂ—iﬁ

B | ey |
¥y a' + ﬂ{u“ i R

From this we gat
d=y-v. =a-a'-px-%". (9.5)

Te estimate this, we nced estimates of a,n',f. Putting (9.1) and

(9.2) together, as one linear model, we must minimize
n -~ & __2 “I - B 2

Edy,. - a - - + ST R L ey

rzliyr a = Blx -x)"} rgliyr a Blx =x )l

with respect to a, a',B. The normal equations are,

L

ny = na , (9.6)
a'y' = n'al , (9.7)
q = SE : (9.8)
where & i
Y=gy /n, y' =Ly, (9.9)
1 1
n _ n' N
= 1 | ——— ]
q f yr(xr—u} + i yr(xr - T (9.10)
T g
5 = E{xr—I} + E(x;~x‘} : {9.11)
1 1

The solution of the normal equations 1s

- rl S
a = 0 0 ny
a'| =|0 % 0 n'y' (9.12)
> 1
£ o o 3| [0 _
ora=y, a' =y, B=qls. (9.13)

ﬂlﬂﬂ. frﬂm {9112}1
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. _ 2 | oo | (9. 14
Ll
4 [ 1 il
n |
1
00 a |
Af The matrix, diag ﬁl : L1 is {E'R}_I
o me ooy 1s :
Hence the BLUE of d 4=
d=% =3' = 3{;—;*; ; (9.15)
The variance of the BLUE is
il p 1l mmin2l
L e ol (x-x") s] . (9.18)
The 5.5. due to regression is
S5R{a,a',8) = alny) + a'(n'"y-y) + B(q)
= 0¥e + a'T'% + q°/s (9.17)
with d.f. = 3. The error 5.5. is
= o nllE
SSE =Ly +Ly -~ SSR(a,a",8)
1 1
n n
- 2 . = 2
= Iy ~y)" + Liy' - y - a°ls (9.18)
1 1
with
d.f. = n+n' -1, {9.1%9)
Hence
nz ,
9" = SS5Ef({n + n' - 3). (9.20)

Therefore, from (3.6.5), a 100{1-a)X confidence interval for d is'

- . e, 2
‘3105t + 4 x=x') 1
d + {F,_,(L,n +n=3)0" [T+ = + 1—3-——- 5l (9.21)
Example 3,
Consider now the twoe linear modals

y, = o+ Bl(x - x) + Exr T = Llyeai,n, (9.22)
yp =o' #Bxl-x) + ¢!, T e=l,2,.,,0 (9.23)

with the same notation as before for x and x'. However in this
example B, ' are not the same., The two lines are not parallel

and we are interested in the point of intersection of the two lines
L]
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vy = a4+ B(x = x),
y=a' + 8"(x - x"),
The point of intersection (nﬂiyuh is given by
@ - a' - fx + B'x"

x - fng-'“
g' -p

¥

g = @+ Blx - x). (9.25)

To estimate Xq» We observe that it is not a linear function of the
parameters. It is the ratio of two linear functions of parameters.

The BLUE of the numerator of %y is

a=a' = gx 4 Bt (9.26)

and that of B' - B the denominator is

E.

g' -8 (9.27)

where a, a',8, &' are the BLUES of a, a',8, B' respectively. To

obtain these, we minimize
n

n
- -~ s 2 e S —
Uy =i 0 =R E Lot BIGLaENS (08
with respect to ;. ﬁ, ;',E*. The normal equations are
0y = na (9.29)
n B . 2
Ly (x-x) =BE (x'-x) (9.30)
rr r
r=] =l
a'¥' = n'a’ ' (9.31)
n' B . n' —
L y'{x'-x") = 'L (x'-x")" ., (9.32)
rr r
1 r=]
The solutions are (9.33)
& ny I
: 1 1 i 1 =2
B | = diag ( Toooy? " a A 21' Iy, (x_ = )
;s e E{x"=x")}"" i
' 1 1 F n'y
5 -2
LI B |
_Et_ _F¥r{xt x }__.
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= - - T I —
n. )
Flx _=-x)
g T ]
b L ey L
vilx’-x
I . —
- i'}:1_.“.1"
. T
and the first matrix on the right side of (9.33) shows that these

mT TTF e =

SLUE® are uncorrelated and the variances are given by

V(a) = o’/n, V(a') = o*/n’ (9.34)
. 2 . a2
V{g) = - v_z i v(g') = = — F {9.3%)
T{x =-x) fi{x'-x")
i = I

Since (9.23) is a ratio, we won't get an unbiased estimate if we

replace the numerator and denominator by their respective BLUES.

Eut it will still be an estimate, and

y-y'-Bx + 8'x'
g-8

xn . - {gl-“']
To obtain a8 confidence interval for Xoy we find, from (9.25), that
x,(8" =8) = (a - a') + (Bx - 8'x") = 0 ., (9.37)

The left hand side of (9,38) is a linear function of the parameters
and fcs BLUE 1s

z = unta' -g) =(a - a")+{px - B8"%") (9.38)

and : .
Vix) = ?1E{;F:ﬂ] + E[:u~;'} -a+a')

= 2 - 2
(x = x,) ! -
| sy L o X1 (L
0 oy n' e E’* ot | @
E(x -x) L (x'=x")
L L.
2
= Ad , Bay. {g.jg]
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Since z is a linear function of normal varlahles, 1t has a normal
distribution with

E{z) = left hand aldes of (9,38)
= (]

and Viz) piven by (9.40). Also z being a BLUE is independently
distributed of SSE, given by
L]

v W&
SSE = Iyr + E y; = S5R(a,B,a",B")
1 1
L]
] 2 n |E P s -
= E?r + I g (nyla = (a'y")a’
1 1
n T SR ater iy
_ o s LI R | i
firr(xr x) 18 {f wt{xr x') 18
with d.f. = n + o'- &, (9.40)
Thereforae
zzﬁaaz
F = 2 {9*’1‘1}
SSE/o " (n+n"-4)

is the ratio of two independent xz variables with 1 and n + n' - &
d.f., divided by their respective d.f. and has the F-distribution
with 1, n+ n' = &4 d.E.

So,

Prob (F < Fl_ﬂfl.n +n' =4)})=1-=-1a, (9.42)

A Fi (1,n+n"-4) is the 100{1-a)® point of the F-distribution
-1
under consideration. From (9.41) and (9.42}), using Fl-n for brevity,

rather than F, (l,n+n'-4), we obtain
1=u

ot o

Prob (z°-aF,_o° <0) =1 -a, (9.43)

where g° = §SE/(nén'-4), Substituting for z, from (9.40), and for a'

from (%.41), we obtain

Prob(p x5 + qx, + ¥ < 0) =1 - a, (9.44)
2 0
where p,q,r are respectively the coefficient of Xy Xy and X, in

A aF, a with z defined by (9.38) and a by (9.39) and can b
| L
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tob ((x.=r.)(xmr,) < 0) = 1 - a (5.45)

Prob (r o) =1=u , {(9.47)
:f v, is the smallest root. If the conditions p > 0, 1y < T, with
T.,T, Teal a

re not met, 2 finite interval may not be obtained and

. R 2 .
e = g ¥ Eyx , +Box , 4 Baxq + Elltxrlnali + By,(x _,-2,)

2
33(%pg733) * Bpox X 0 + 819X X 4

:13 r2%r3 T 0 (.45 l

s, =1 X /M (1=1,2,3) (9.49)

and the colusns of the matrix D below Elve the values of x

» X :
and x_ .. rl*"r2 |
rl |
D7l 8 g
D= —.'!-'.I !
. ' {9.50)
| D, | 6 &
L 0
J & F_

s
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[Tl =] =i -n 0 0O
el U -1 1 SR Tl 0
-] i =l 0 =n
-1 1 1 0 n
1 -1 -1 0 0 =-n
Ll =1 1 ¥ a
1 1 -1 - -
B 1 1 1

The model (9.48) can then be written as
y=X8 +¢ ,

vhere

X = [E|p|R] ,

E. o [ﬂﬂr Blr Bz:-

E' = a row vector of 18 elements, which are all = 1,

2 2
and the columns of R are the values of Keq = By %o

13 % 2%r3 (r = 1,2,...,18), where Xe1 e ®

colunns of D above and hence, due to (9.49),

EI1 ﬂz ﬂj ].E W

A little algebra will show that

ar.) ,

' =
X'X = diag (51,52. 9

wherao

2, B+2uzj <

2
51 = diag(lB, B+2a , B+la
4
SE = Ja 13 + mE}]

E.. = 3 x 3 matrix of unit elements

k!
mw (40 = 15.:2 - Enﬁ}fﬁ.

Observe that
Rl ] (20" + 3m) 1, -mE

}.
< 202 (2a" + Im)

33

Bas BypofogafygiByaabyqaBy,]

- 52 and :E

r3

(9.51)

{9.53)

o Yoo

are given by

(9.54)

(2.55)

(9.56)
(9.57)

{9.58)

(9.59)
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(] ] '; |_ -l 1
X Y i =
1 8 II':H ] 5 iiq. S? ® H[j} L]
|1 4 1
Wy |:I"'.l':1' I'.“ '.-.II.'I-IE"|1["| ol 'L - ':l'.l}._ t"'ﬁ'
a8l i =]1,2,3), q, - B ¥ L ¥ ¥
then from (9.60) and g = tK‘Rihtﬂ, we obtain
g T
3, = q/(8+20%), (1 =1,2,3)
g 4 1 g ii - r BRI
2a 20 (2a%3m) =1

Also, observe that, since

e’ |

V(E) = 32 (X"X)

-
L]
E - B

“""“*i'iij are all uncorrelated except the B;; among themselves,
and for them

& i E =
Cex{‘ LB, ..) = = a, i+#73, (9.62)
i1*71] 20 (2a%43m)
and . EI . uz
V(E,) = s V(B,) = . (9.63)
0 18 i 8 + Euz
2 2,1 m
V(E, ) = a"( - } (9.64)
11 Iuﬁ {En& + Bn]Iuﬁ '
- ﬂz
V{E:”}, (1 ¢ j) is 8 {9.65)

This is an example of estimation of response surface coefficients in

the second order response surface model (9,.48), The design matrix

for this model is given by the matrix D and is called a central

composite design because D 1s composed of three different parts D

D, and 0. D, 1s called the factorial portion of the design, because

it represents all :ﬂﬂhinltiqn; of levels =1 and 41 of three factors

hat it Z
or that it forms a factorial experiment, DI 18 called the axial

points" {iﬂ,ﬂ,u}, {ﬂ.ip,ﬂ}_ (0,0,+a) are axial

portion because the "
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prolots In the H-.-.ml.'-ll.'li‘nl o T gurat Ton { en rmesid h'!f nll the I“'J*"LH
r 1\1_:-.”':;11 i 1,
tiee the vesaponse surface lon eatimated, y can be pradicted for
a tuture experiment witch Ky a¥y Xy OF "aptimum" valuen of Kys%q ¥y

tor A desived v can be determined,

What value of a should be chosen? One answer to this gueatlon
ie provided by (9.55), which Indicates that X'X will be a diagonal
matvix and all covariances (9.62) will vanish 1f a is chosen to be
the root of the equation m = 0. A solution of this is a = V2 and
since the BLUES ﬁn.ﬁi,ﬁii.ﬁij all become uncorrelated with this o,
the design D with o = 2 1a called an orthogonal central composite
design. For other 'desirable' values of a, reference may be made

to Mevers [49].

EXERCISES

1. A cost study was made on B9 dairy farms. The dependent variables
was the amount of milk sold(y) with the following independent wvari-

ables:

® amount of concentrates,

X, amount of silage,
x, pasture cost,
L roughage cost.

The means and corrected sums of squares and products of all these

variables are given below.

" % %q X, ¥
% 50.5154
x, —66.1617 967.1077
Xy = 4.84289 13.5895 12,5457

x, = 0.937732 32.4425 -12,5195 192,3053

¥ 36,7974 39.0556 7.02815 9.99432 1113.3872

Means 2.94310 3.90647 1.16426 3.60326 5.73994




taiv the osi

imates of the regression coefficients in the
TERIVEAELIOM 01 ¥ on \L.H:.Hl.w4 Obtain the variance-covariance
matvix ol these vegression coefficients and their estimates. Teg
the signiticance of each of these regression coefficients at the

level ol significance,

omitting x,.
of

In 1941,

=

thi

Cost per

Chapter 4

Multiple Regr

ton was 18 dollars for concentrates,

sold for 3.2 cents per pound,

adjusted profitable?

<.70 dollars for silage and 8,50 dollars for roughage.

Milk was
Which, if any, of the feeds would be

Estimate the profit or loss and its standard error if 3200

pounds of concentrates, 4000 pounds of silage, 3000 pounds of

roughage and 15 dollars worth of pasture were used per cow.

2. From each of six batches of rubber, six sample specimens were

taken for each specimen, measurements were made of T, the tensile

strength and E, the percentage elongation before breaking.

results are given below,

The

-
¥

Rewrite the estimated regression equatiom,

Batch
Ko. Specimen Number
1 2 3 4 5 6
T 171 169 167 163 132 129
! 3 533 507 513 507 420 447
T 206 198 187 174 169 149
# E 607 567 567 527 533 480
T 198 196 194 172 170 164
3 B 493 507 507 467 473 447
T 212 206 190 190 172 152
4 E 621 614 SBS 578 550 535
T 186 184 181 166 162 126
J E 580 567 560 553 520 460
T 178 176 172 168 158 152
6 E 507 S14 507 493 471 457
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1t Can a single vegression formula for E in terms of T rapresent
all the =ix batchea?
vi1) 1f net, are at least the regression coefficients the same for
the six batches?

111! Test the linearity of regression of the batch-means.

. The fellowing values of x (pH value) and y (activity of a

ceriain enzyme) are observed
= 1 3 5 [ 7 9 11 13 14
v 0.2 1.4 6.6 7.5 9.8 9.5 6.4 2.3 0.3

Fit a polynomial regression of y on %, of an appropriate degree to
this data. Predict the values of vy for x = 2 and x = 14 and obtain

the standard errors of these predicted values.

=. 0Observed values y of n independent random variables are given
cerresponding to x at unit intervals from - %{nvll to %{n-l]. For

anv x, the expectation of y given x is n(x) and the variance is uz.

Define 2
_ 2 n =1
E'l: I, EE’. X = _12" &

Show that Elx’EEx are orthogonal polynomials and

N 2 = i 1-
LElJ{ nin =1)

12
ol ” 1 2 2
Q{Ex 180 n{n =1)(n =-4).

1f nix) is a quadratic polynomial in x, derive, for given x, the

linear estimate of ni{x) which has minimum variance.
If x = %Lfn-l} show that for large n this minimum variance

tends to
Hu?

&n

fﬁ}.f‘ I PR ).

5. For the model of gngm‘p]u 4 of sectlion gl obtain the 111.EI'EI.IIE in
the varfance of the BLUES of the response surface coefficients if

the last four ebservations are deleted.

6. How will you modify the formula (2.57), when one wishes to

predict the mean of q future observations, corresponding to the same
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get of values x?.+,_.1; of %, yuee,X ¢ conglder the cnaes q = 1

1 "Tp
and g =+ =,

1s the test of the hypothesis Ili = ) far the model (6.3) the
same as the test of the hypothesis "1 = {} for the model (6.4)7

§. n observations of ¥, x],,.,,x are available. The model 1is
P

¥ =a+ B.x + + B

r 1% T 4en e

i, -
where € 7 HIEG.UEI and it is known from the physical nature of the
variables that El + .. + EF = p.

Obtain the BLUES of u, El,...,ﬂp, their standard errors and

the analysis of variance table, Obtain a 95% confidence 1interval
for the predicted v

i

corresponding to a future set of observations

on :1,...,xp.

8. If, in the multiple regression of ¥ on “1’“2'**"“p' it is found

that the regression coefficients (estimated) By and B, do not differ
significantly, and if it is decided to pool the regression coeffi-
cients together because the variables %; and x, are of the same kind,

show that the average regression coefficient is

au{:li-cui} + ﬂi{cu

1.|-':1.1.1.:|I
nuu' zcui ¥ cii

vhere ¢, (i,u = 1,...,p) are the elements of the C-matrix of (2.8),

Show that the variance of this average regression coefficient is

2

Eil = Ecui +'ﬂuu

Show further that the reduction in the regression 5.5. due to the

use of this average regression coefficient is

- - I
{Ei -Eul {cil-lcui+ﬂ )

uu




Chapter 5

ANALYSIS OF VARIANCE

INTRODUCTION

The technique known as analysis of variance is one of the
principal statistical tools and is very useful not only in bioclogical
sclences but also in the social, physical and engineering sciences.

If observations are taken from a population with mean u, all the
obzervations will not be identical. They will fluctuate around the
mean, due to random observational error. The extent to which the
observations will vary can be measured by the variance of these
errors. This is a 'matural' inevitable variation. But if, on the
top of this, another source of variation or sources of variation are
either deliberately introduced or are suspected to enter due to cir-
cumstances beyond our control, the effect of these sources can be
assessged by analyzing the total wvariation and splitting it into com-
ponents corresponding to these other sources of variation. Thus if
one wishes to assess the effect of a sleeping drug on the average
amount of sleep of patients, one can record the number of hours of
sleep of patients who are not given any drug and of another group of !
patients, who are given a particular drug. Other factors or sources
of variation like age, sex, disease of these patients may also be
affecting the sleep and these suspected sources of variation might
also be included in our consideration.

A deliberately introduced source of variation is called
"treatments'. Thus certain patients do not receive the “"treatment”

and form one group and certain patients are given the treatments and

16l
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form the othey Eraoup, One can have moroe proupa by f‘.’llﬂnging the
“dose” of the drug —- which atatieticians call as r_‘hungjng the 1eq

of the factor -- drug.

Besides the drug, the patients can be classified according gg
some other factor such as age or sex. All such sources of variatioy
taken into consideration are referred to as 'factors'. Our primary
interest may be in only one factor -- the treatments =-- or it may be
in all the factors that are present,

The data is thus classified into different classes according pq
one or more factors and each factor may or may not be contributing
to the variation but is at least suspected to be doing so and this
total wvariation is analysed by the technique of analysis of variance,
t

find out whether a factor really is effective or not.

The underlying model is an additive model for the separate
effects of the various factors and their joint effects together with
cbservational errors, which are assumed to the HI{ﬂ,ﬂz}. Thus it is
& particular form of the general linear model and the theory dguﬁlgphﬁ
so far becomes applicable.

First, we consider the very simple model where there is only one
fector according to which the observations are classified. Later we
shgll generalize to several factors and their joint effects also,
This eimple model is called 'one-way classification', because the
observations are classified in only one way -- the levels of one

factor only.

2, ANALYSIS OF VARIANCE FOR A OME-WAY CLASSIFICATION MODEL

If there are k classes or k levels of a factor, which is either
deliberately introduced such as k doses of a drug or which is present
anyway, the model can be expressed as

= u 4+ a, ¥ E {2.1}

Y14 $
1 - llll-i‘k
= l,.*.,n1

where Y4 is the observation (like number of hours of sleep) on the
j-th individual in the i-th class or group. There are nyg individuals

‘ |

i
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in the 1-th group. If the n, are not equal, we call f{t one-way
classification with unequal numbers in classes. All obaervatlons
would have the same mean u, but as they come from different classes
and each class may have a different effect on ¥, we add o, to u to
indicate the possible change introduced by the i-th class on its
wenbers, rij iz the t.?dqm error and we assume, as stated earlier,
that the £gq OTE NI(0,07), where o? 1s unknown .

¥e cam write the model as

g ™ YRt ayxy 4 anx, 4L +ax + €4 » . (2.2)
i=1,...,k
j = 1..,.,.:11
where
Xo = 1,

¥, = 1, 1f an individual belongs to the 1-th group

0, otherwvise,
1l = 1,1...-,‘l . (113}

In this form, (2.2) represents the regression of y on Xy Xparesaky.
But XpeXyee-., %, are not physical variables here, like teﬁp::ltuti.
sge, height, etc. They are dummy or indicator variables, taking a
value 1 or 0. Analysis of variance models are thus regression

. models, with regression on such dummy variables, while usually in
multiple regression, the regression is taken on actual or physical
variabkles. 1In a later chapter, we are going to consider regression
in which some varlables are physical varlables and some are dummy.
It 18 called an analysis of covarlance model,

Since an individual belongs to one group out of the k,

SIRETTI ]l = % (2.4)

end on account of this relation, 1f (2.2) is expressed as
Y= 48+,

the first column of X is equal to the sum of the remaining columns
and rank of X is not full and this is a non-full rank model.
To find out which parametric functions are estimable and the



2 - ative of 2. As the coefficient of any
TED Eme AT T . Sormal equaticns corresponding to any para-
= i = i_zes T¥ simg accing all those observations in the
expectgtios of izt that particular parameter oeccurs. Thus,
e s iz Ely cr il 1,j, the normal equation corre-
s Doy -8 TStaizec Ty acding zll the equations (2.1), except
z =< P==tiz=g & circomilex oo the parameters. Thus we get
Fga = 1202 # 2,2, (2.6)
fimilasly, sizce 2, occurs in the expected walue of the ny observa=
—.SEf LTom The L-1I group omly, the normal equation corresponding
.;_ y o = :-" v :il;l' - {2'?}
a iy
- -__:I"_JI b g 'l':-::lri ||Il__ :I.i "
iy ) ¢ g g
- ':...il :.|" 1 T "Il:' ]
1 1] i 1." 1
E = I a, , (2.8)
o
The morma. squastions are

%), Tous we don’t have really k+l equations in the k+l unknowns

: (2.

sira=tage of amalvsis of variance models is that, one nesd

L = T, # .'.r.i..liI {2-9}

'.".. - kT E a ., (1 = lrzi-'“lk] . {2'1':'}

- L *

can readily observe that, sdding the k equations in (2.10), we get

Sip000,8 . We are short, by at least one equation. So we need

lesst ome additiomal equatiom (2.9) suggests, we should take
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Aol i (2.11)

as the additional equation. We get u and using that in (2.10) we

pet a.. The solutions obtained by using (2.11) are thus

5 Y - Ti } 4
b = Ti’}."‘ll IJLIFE— = H .}.1'_.:"" & [21.12}

Since we did not need any more additional equations, the rank of the

estimation space is

r = rank X or rank X'X
= number of unknown parameters - number of additiomal
equations
= (k+1) - 1= k . (2.13)

We can have thus at'most k linearly independent estimable functioms
and u, Bas++aly, are not all estimable.

To find what functions are estimable, we recall that X8 or
¥'XE are estimable, So from (2.1) or from (2.9), (2.10), we find
that

u + |:|.1 are estimable.

(2.10) tells the same story. Since p + a (1 =1,...,k) are k
linearly independent estimable functions and since from (2.13), r=k,
we have a complete set of estimable parametric functions. Any esti-

mable parametric function must be thus of the form

k
L e (py+a). (2.14)
=1 i i
But (2.14) is
k k
¥ L e, +Lc, o
] 1 1 e |

and hence, if we don't want p to be involved and desire to have only
a function of the u's, which represent the effects of the k groups

or classes, we must have

k
Tec, =0. (2.15)
i & 3

fhus, for the model (2.1), 1 c,ay is estimable, 1if and only if

Ec

g 0. Such a linear fu%ctiﬂn, where the coefficients of
1 n
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Byaeenaiy add up te zero, is called a contrast. Only contrastg

2's are thus estimable., For example, My =M1, 0, T""ﬂl-uk are
L:Uﬂ-ll.i.-t.:l like a,-a

g oy Areg
elementary contrasts. They

represent a simple comparison of twg
different-effects or groups. Contrasts like ayta,-2a, or €t b
cay with Tci = 0 are general contrasts,

conttasts, .11411“.'.'.1.,3 is a contrast.

They can be expressed ag i
near combinations of elementary contrasts. Thus

2 - 313- {al— .:LJ} + l{-::.E —-.'.|.3:|.
- oo - cliul - akj + ..+
uc,_.*...-l'-v"j‘-ﬂ.

The vector

€y ¢ - md,

El = [:l'tli.-n'ﬂk]

called a contrast vector if 4 + s * c, ™ 0, or if
2y T

that is if ¢ is orthogonal to Ekl+
How many linearly independent vectors like ¢, satisfying (2.16)
can be found our?

(2.18)

L]

Obwiously k-1, because ¢ is a k-component vector
gnd is orthogonal to one vector Ekl’ or 1ts deficiency matrix is of

rank 1. Hence we can have at most k-1 linearly independent con- :
trast vectors. One such set 1s

[11 _1l UJ----D]

[1, 0, <3401

Iy

[1, O, 0,:..,~-1].
Thie corresponds to contrasts

ﬂl 1' ﬂ alni--ulhuki

One set which deserves special mention is,

S k-
where

1
£4) " Totan Ml al, 4, 0...0] (2.17)
1 times
1 = 112|1+||khl,
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e corresponding contrasts are
+ + . ew F = ia
h 5 141 (2.18)
“(1) (1+1)

The special feature of (2.17) is that

Sy =1 and ghen, =0, Lfu. (2.19)

. SETRE ) [ T N,

That is, Eiq) re unit and mutually orthogonal vectors. Further, om
gccount of (2.16), all these ECi] are orthogonal to Ekl, We shall
use == E

e Epqe to make E q ©f unit length and then we have a complete

set of unit, mutually orthogonal vecturn.Eci]_ (i=1,...,k-1) and

-%? Eil' The matrix -
Ef
e . .20
{ur‘k}zn o (2,20
=(k~-1)
1
%

is thus an orthogonal matrix, the first k-1 rows of (2.20) are con-
trast vectors, the last one is not. The last corresponds to the

linear combination

S S (2.21)
ﬁr’ 1 E

which is not a contrast but is proportional to the total,
We shall describe

¥ = 5
ca 1% o STRERE, L

as a unit contrast 1f ¢ is a unit contrast vector, that is

or

3 k
Ec, =1, Lec =0, (2.22)
1 1

The result that only contrasts of a's are estimable, can also be
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proved more laboriously using the condition A' =1'H of estimab
of '8 in the general linear model y = XE + £. (see 2.4.6). F .
this we need (X'X) and (X'X) .

The matrix (X'X) is the matrix of coefficients of the E's in

the normal equations. In the present situation, it is the Iﬂatrh*
coefficients of

[ - [

Ll. |11.|-|-'|,|]k in {Elg]| izi-ln}l

Therefore, — I ! n
X'¥ = H | By aligseniyly (2.23)
i §
: diag {“l"“’nk}
L“k ] .

The matrix (X'X) 1is the matrix of coefficients of the left hand

sides Qyalg +eo in the sclutions of the normal equations. Here the
k]

left hand sides of (2.9) and (2.10) are ¥ and ¥ (i = 1,000k}

i
Their coefficients in (2.12) yield

Yy = l_ B
(X'X) N 0
1 1 1
== | diag (& ;en00y =™ ) (2.24)
H nl nk
£
| W 3

50,

H= (X'%) (X'X)

= 1 _1 b ] _I}E ¥ O w"EE g “k 7
K ] N (2.25)
n -1 =
(1] 1_...:'_'. L z L ka'
— H H H
n o
“'_1 E 1____2_ 5 E®EEs ¥ i
M H H
s o | "
E L] R B omeas g 1-‘_‘H'
-—
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erefore cou + cyop + .. + ¢ 0, 15 estimable 1f and only if

'-'__-'l-!"‘l I"IH = [Pﬂ'ﬂclif"lck]l

tituting for H from (2.25), 1f and only if,

€ " 9 + s ¥ Cp (2.28)
linear function of only a's, Clﬂl * cuw ¥ tkuk iz estimable,
Jap A F
1 L au T Eh = [} as QD = [] , EE.E?)

not necessary to do all this laborious algebra, as we could

the samé result more directly and easily.

In our model, o, represented the effect produced by the i-th
d we may feel sorry that a, is not estimable, But it should
be remembered that we really don't need the absolute effect a,. What
we need is a comparison of two groups. What we need i3 how the
numher of hours of sleep of patients taking a sleeping drug compare
#ith patients who are not glven any sleeping drug. We need to know

heew patients with only 1 dose compare with patients with 2 doses and

g on. In other words, we are Teally interested in a, = a or
CEORErascER L1k
i + i
LE r
Jr = 2 M
etiz, S0, the fact that a, are not estimable is not really any

digsappointment as most experiments are meant to compare one set of
conditions with another set.

ﬂ]mi]n[]y. i i hypntheniﬂ

S = i), uz - U,...,uk -
that is H’?I]J = y, (the same) for all groups is not "testable" as
uj'h arie not estimasble, But the hypothesls

H % @, = - e W

0" "1 " "2 K

ig testakle, bBecause H” can be written as

# ....-r g el — =
””. 1y 1, 1, i, uy ﬂ""'uk—l a 0,



thaptor b 4'I.I1.I'II_'!.I'H.|I!| of “‘.r’_.

and the contvantm o o In ”|| are all eatimabhle, IF Hn i trus

Ly iV o 4 the common valusa al the I'I*FI-|

and thus all the groups have fdentfical means and we have Flttu]#

the same result, as undey a. = 0 a, =0,

I ‘EERLE ] .I"'
Betore testing this hypothesis of homogeneity of Eh: k group

means, we {irst observe that the BLUE of the contraet Eﬂiul’ vhen
. = ] 1_|,_t.'l|."ll'h '.:.I-IJ.:Il 1
i k " k
o i ipi‘{"'i."’r !
k
i : - + (2,28

Thus we have:

The BLUE of any contrast among the group effects a, 1s the same

i
contrast among the observed group means Yy

The natrin a cx ¥)" acts as the variance covariance matrix of

- - "~

Ba Bgaeesy By and hence the variance of the BLUE Eciui is (see

:d-E-i-".l'-.
210,¢ e 1(x'x)7[0,¢ c ] r
- ¥ 1.!11’ k 1] 1}"'"! k )
" I xR & {Eiz!]
n
2 k
The Envariunce between the BLUES of two different contrasts E:in1
and Ldiu!, where 0 = [c, = Id,  is 1
! { i i
')
a [ﬂ cl-il-l Ick]{x'”‘lﬂldlpill'dk]l ‘
k c . d ’
-o'p AL o (2.30)
1 i
Kote that the contrasts
Ecjui and Idl "
may be orthogonal, that is Tcidi may be 0, but that does not mean {
that their BLUES are orthogonal, The BLUES are orthogonal or
uncorrelated only 1f
cydy
E = =0 . (2.31)
i i




SR T — —— -

Eection 2. ine-Way Classification Model 171
*nly when My ™ My ™ weee™ Moy that is only when we have equal

number of observations In each proup, (2.31) will be satisfied when
te.d, = 0 and both contrasts as well as their BLUES will be

|
orthogonal.

The 5. 5. due to regression is, from (2.9), (2.10), and (2.12),

- kﬁ
SSE{;,nl,...,uk} - uY__ + E gifi"
?2 Ti T
Sk R +EY{_'_ "':'
N { i ni N
vy
=T, E . (2.32)
i n

with d.f. k (and not k + 1) due to (2,13), And
2

SSE = iEl jil Yij " SSR{u, '11"”";'1;}
2 Y4
- EE¥, ~iE, -2 . w3
. 2
which can alsoc be written as
?;(Fij - yi_}z. (2.33)

1]
It has N-k d.f. This is alternatively alsc referred ro as "within
groups"5.5. The reason behind this terminology is that ¥y is the
mean of the i-th group and

g

is the deviation of an observation from its group mean and if we
Square and add such terms, we get a measure of the varlation

"within" groups. Since members of the same group have the same

group effect, {yiluyi'}z is a measure of the 'natural', "inevitable",
variation of random errors, as the observations are from the same
group. It is thus intuitively obvious that (2.33) should provide a
measure of nz, the "natural” variation. That this is true in fact

is known to us from the fact that




172 :
Chapter 5 Analysig of
?ath“

5E

—

= 5

ful e

iz an estimate of nz and s0,

52 _ Uwithin groups" §.5.
d.f. N-k : (2.3 |

Te test the hypothesis

H.: o, = ,,., =aqa

0 1 k*

we now rewrite the model (2.1), using the HGI and get

U + common value of a's + & .

713 " £
= u + a + Eij .
Minimizing
o R A

EE{Fij -y - a)

ij
with respect to u and o, the normal equations for this revised mode]
are

Y'_ = Np + Ha , {2.35)

Y = Nu+ HNa., (2.36)

We get the same equation. This is not surprising because neither y

L]
nor a has any subscript 1 or j and both occur in every in each
observation. Actually we could have merged the two together and
called Mg = M + a as a new single parameter and saved our algebra,
Any way, we have two unknowns and really only one equation., We

need an additional equation, say a = 0, yielding
- b4 - '
ol TR B

Hence
S5R(u,a) =¥ p+Y¥Y a

N 3 (2.37)

with d.f. = 1 and not 2 as we needed an additional equation

Hence the 5.5. for testing I-ll_.|| is



Section 2. One-Way Classification Model 173

SSR(u, ul,....nk} - S5R(u,0)

» ?2 TE

T = (2.38)
g 4
with k = 1 d.f. This can also be expressed as
2
= - 21-

EEHD Eni{yi. y.'} . (2.39)

This is alse referred to as §.5, "Between groups', because ¥4 is

the mean of the i=th group and ¥ 1is the mean of all the groups and

50
£ PR
{s the deviation of a group mean from the grand mean y and thus
k o
I ni{?i -y }2
l L] LI

is a measure of the group to group varlatienm or of variation
"between groups" (-- rather, variation 'among' groups).
The F-test for testing Hﬁ is thus provided by
SEHGF(k—l}

Between groups S5.5./(k-1)
F SSE/(N-k) Within groups S5.5./(N=k) (2.40)

and 1if Hﬂ is true, has an F-distribution with k-1, K-k d.f. Hn will

be rejected the 100aX level of significance, if the observed value

of F above exceeds
Fl"ﬁl:k-l1I N-k). (2.41)

These calculations are usually exhibited as in the following

"Analysis of Variance" table, where it should be observed that

Between groupa 5.5. + Within groups 5.5.

2 2
= In,{y, =y ) + LIL(y, .=y, )
i i i-l - & 1_j 1-j i'
= LE(y,. - ¥ }2 (2.42)
. 1] ik .

and this quantity is called the total 5.5, = strictly speaking that

"corrected" 5.5., because rzyij is the total 5.5. of all observa-—




Chapter 3 aAnalysis of Variane.

tions and if we subtract che mean ¥ from y, , or if we correce
Y 713 for the mean, we get the corrected total S.S.
22y, -~y )2
TRE et
eay X
~ Ty L (2.43)

oo e o
Table 5.1

Analysis of Variance (ANOVA)

Source d.£f. 5.5, M.5.=5.5./d.f. F
Betveen groups TE TE SEHD
or k-1 p == e SSHUIIE-II i
5.5. for testing Hj i . (k-1)a
Within groups -
or N-k $ SSE/(N-k}=a
Error
A
Total (corrected) N-1 By, , = " .»

The symbol t stands for "obtained by subtraction" as used earlier
and in practice the fidentity (2.41) is used to obtain SSE as the
difference between total corrected 5.5. and the Between Groups 5.5.

From (3.6.5), the 100(1-a)% confidence interval for a contrast
e a, iz

11 2
k k € =g 1/2
f‘ﬂ'i. * {i 5 ° Fy_q (k=1,8-k)}77€ | (2.44)

The 5.5. for testing the significance of a contrast, that is for
testing the hypothesis,

Byv oyl e om =0,

is by (3.4.22)
k
(ftifi.
k (2.45)
Eniﬁni
1

with 1 d.f. and can be tested against the SSE with N-k d.f. Im

}2
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particular the F-test for testing the equality of two group effects,

say a and ﬂu,is provided by

{Fil - ?u.jz
Pk "™ 5.1 .1 (2.46)
a {;‘ *':rﬁ
: i

3. SUMS OF SOUARES AS QUADRATIC FORMS IN IDEMPOTENT MATRICES

We can express the Between groups, Within groups and total 5.5.
as quadratic forms in normal variables, with idempotent matrices.
For this purpose, we use the indicator variables EnsFpreverXy, 88
defined in (2.3). Let y denote the Nxl vector of the cbservations

Yij in the order,

h ¥ EERES ) LTS FEREES » {3*1}
11*712 In, 2n, k,n,
That 1s, observations in the first group are written first, followed

by those in the second and so on. Let Eﬂtﬁir"‘kﬁk denote the Nxl
vectors of the values of BpaFgae e a®y in the same order. Thuﬂ,Eﬂ

will be a vectoer of all unit elements, while

Ei = [Dri*lﬂ, 1'.--1 ﬂ,llln] - {3-2}
“1+---+ﬂi*1 ni N-hi"lll-ni (1'1,1,...,HJ
Then
vl 1.3
B i 7 (3.3)
- 1 - - 3-&
'!'L y'x, (1= 1,.ce5k) (3.4}
Therefore
2
Between groups 5.5. = I nifyi -y )
i- - -
B e e --L.Ifu x!
n X X%~y X Sofet
i ] 1 L
-yt xx - Loxtyy
o (3.5)

where
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H-TI_E_?"-—

Similarly,

Total 5.5, = :.:]_'{.Fij -y }2
i] 5‘
. Iiy* i*_
i 1 i
"YIY-ygrExy
- EI{I = lﬂ x'jI
-¥'Ty
where
1
T=1==x9x".

Also, from (2.41) and (3.7), (3.8}

Withfutjgroups 5.S. = Total $.5. - Between group S.S,

=y'Ty - ¥'By
-y,
where k i
- — - — Sl '
LSl s 1 f ni-EiEi 2
Observe that
CHFTTD Ny [T & ' 1 o 4
B (r o % - = "ufu} (L n, X x, - ﬁc_ﬂtﬂ'l
1
= I X x1% x' = [ — % x'x x!
{u 040, 171 n N =1=1=0=0
4 1 X0 x' F o— x x'x x'
nlﬂ O=—~{~1 Hz —0=0~0=0 *
But
Ay~ ¥y tH0

<

{3IE}

(3.7)

(3.8)

(3.9)
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A

.!tﬂ . El ¥ oeus Lk 3
""'u'-r'q'-l:'.-'u:r-'-,|
2 1. i & i --!-"'I: L]
Bl oar 24T W AR TR S
1 ' {3.11)
+ N IDID
- Hr
Further,
rank B = tr B = ¢r {E*l-ﬂ x! - £ x.x')
nl—{-i N =00
- 1_.. L] _l. i
er (E “ilﬁiﬁi ¥ %0%0 )
1 1
B o {E'—l n, - R H)
a k =1, (3.12)
Similarly
TE = 'I" Hz - i
rank T= N =1, rank W= N - k. (3.13)
Alsn

By = (r%; 2! - pEl) (1 - 5%511;]
= u-'
after a little algebra and use of (3.12).
Thus we can apply results of Section 9, Chapter 3 and James'

Theorem in Chapter 3 to the quadracic forms in the identity
y'Ty = y'By + y'Wy (3.14)

te show that

1 1
F2'r . Ty

a
2

are independent non-central or central yx "s with d.f. k -1 and H-k
respectively, By (3,9.12), the non-centrality parameter in the
distribution of I'Hifdz is obtained by replacing y by E(y). Hence
an ifﬂifuz is also given by :E{yij =%y }ifﬂz. the non-centrality
parameter 1s 1
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LE[B(Y, ) - Bly. Y1%74%
[ECy, , By, 1"

ij
" -’ r
" lilp+a, -y = a)a
(4 : :
S (3.15)
and y'Wy s a ‘+F2. but in general, the non-centrality parameter in

the distribution of I'Exfnz or Rnli?t -y j?f”J [s
{ - - &
§ = In [ECy, ) - B¢y )1%/0°

i
- tni{ai - Eﬁzfﬂz (3.16)
i
where B k
a= iniuifﬂ & (3.17)

and vanishes only when
BI.EE- ___Iluk_ c:-lﬂ}

From (3.1.20), we get the following values for the expected values
of the mean squares in Table 2.

Table 5.2

Expected values of mean squares

Source d.f. E{M.5.)
2 Eni{ui- Tﬂz
Between groups k=1 o +
k-1
Within groups N=K uz

Thus, 1f the groups are different, that is the a's are unequal, the
expected variation from group to group is larger than the "natural’
variation, within members of the same group. This is the underlying
principle in analysis of variance, in general. The total variation
is split up into components, one of which provides a measure of the
natural variation uz and the other ennpnnantu.cnrranpﬂnding to
sources of veriation due to the other factors which are deliberately

introduced for testing purposes, would contribute Hisniflcantly BT
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sectien s Breakdowm of the Between Groups §.85. LEy

i< natural variation, 1f they are really effective.
he identity

2 F
v, ,=v ) = En {y, =y )" + LE(y, ,-¥
s ¢ T g 177 1 13771,

OR
total 5,5, = Between groups $.5. + Within groups 5.5.

11

iz the fundamental identity of analysis of variance and is true for

anvy ohzervat ionz j:'ij irTEEP-EEt.i\"E of any .lsmtiqn‘_ For bbf_liﬂ.i'ﬂs

i

LUE: of contrascs of a's, we need to assume that the errors ‘11 are
upcorrelated, with a common variance ﬂz. But for testing of

hypotheses about a's and confidence intervals, we need the assumption

of normalicy.
<. BREAEKDOWN OF THE BETWEEW GROUPS 5.5.

Consider ¥ = 1 contrasts
k
31': iul:lu.l {i - 1.1‘ !!!pk‘“}-} ':'i-l}
u'-

guch that their BLUES
k

o Rl (4.2)
u=1 u=1

i I

aré uncorrelated; that is (see (2.30))
k e¢,c

i_ L
p Y Lo, 143, (4,37],...,k D). (4.3)
u=l 1]
From (2.453), the 5.5. for testing the hypothesis
k
H,: T e¢,a =0,
1 T iuu
i
" k 5 W 5
5. =[Ee,. v, 1Ml Ec. m ). (4.4)
i ot iu’ 1. ] i1u u
(1=1,2,:0a,k=1)
Then
51 + 52 P Sk;l = B:tv:en Groups 5.5. .
2
L nltyl =y ) . (4.5)
1.1 - -

Each 5, carried 1 d.f. and (4.5) thus represents a breakdown of the
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Between Eroups 8.5, inte k-1 components, each carrying 1 4.E. The

result is intuitively obvious, because H, tests that the i-th

contrast Ic, &« 4is null and so, if H 111 hold, the
g iu u

l.‘, 2||++| I!'-'- 1 -
contrasts E:iuuu (1 =1,...,k-1), which are linearly independent
u

{this can be proved frem (4.3)) and thus form a complete set of

linearly independent contrasts among Bseneyity are all null. Hence

Therefore, a, = au

i
(i ¥ u) are all null, for every pair (i,u) as g, =8 ({being a

contrast) is a linear combination of the contrasts (4.1). Thus, if

any linear combination of them iz also null,

Hl""'Hk-l all held, HD which states B = e =il also holds and

conversly, if Hn holds, every contrast is also null. But the 5.5.

for testing Hﬂ is the Between group 5.5, and it {s not, therefore,
surprising to have the fdentity (4.5).

A formal direct proof can be given as follows. Consider the
(k-1)xk matrix

o § | | e Gy

(4.6)
©21 C22 o B

“k-1,1  Ck=1,2 " Sp1 g

Let
Ck = [tIu], where c¥ = . (4.7)
= “1 \/ g
e N I : (4.8)

¥ "[: ] (4.9)

Observe that
C*E-u,

as Eti = (0, because Eciuau is a contrast.

rows of C* are orthogonal. Alsoc the 5.5, of elements in any row of

G+ 15 unity and a'a = 1. Consequently P is an orthogonal matrix.

Also note that, any two

Let £ be the column vector whose i-th element (L=1.....0) 1a

1.11 ]l"i-+

—— e —




-!'"':ﬁ'“'-

Cieesl ey N Poror of .I’I.ﬂ!'l]'ﬁl'ﬂiﬂ- lal
- i*r']‘: {as P is orthogonal)
ﬂ*z
I £ *

= (Crz)'(C*z) + (a' 2} s f(due to 4,10)
i L, P

= (Hl k8, b oaas # sk“lj + 1 , (due to 4.8) .
Therefore
k
. " 2 2
Sy 4 Sy e ¥ 85 f“i?i. - Ny

2
= Eni{}ri_u}r b,

= Petween groups 5.5.,

proving (4.5).

0f course (4.1) iz one set of k-1 linearly independent contrasts
and is not unique. In practice, one should choose the set that is
most interesting, meaningful and relevant to the problem under consi-
deration for obtaining the subdivision 51,...,51:_1 of the Between
groups 5.5,

5. POWER OF THE ANALYSIS OF VARIARCE TEST

The power of the F-test for the general linear hypothesis in the
general linear model was considered in Section 5 of Chapter 3. The
power function was given by (3.5.7) or (3.5.4). To apply those
results to the F-test of (2.40), we observe that

f. = d.f. associated with Hﬂ = k -1, (5.1)

1

f, = d.f. assoclated with Error 5.5. = N-k, (5.2)

2
and since the between groups 5.5. is y'By and from Section 3,

gfﬂlfuz is a non-central xa if H, 1is not true, the parameter ¢ of

0
(3.5.6) is given by using (3.16))
k
tn, (a, - @) 1/2
1 1
* = 2 ] {5'3}
ko

Tang's tables or the Pearson-Hartley charts can then be used for
evaluating the power of the F-test of the analysis of variance
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corresponding to a given level of significance a.
Alternatively, one can use (3.5.4), namely
Power=g(a’) = [ g(E|£,£,,07)dE (5.4) |
Fl-u{fl‘fzj

where g 1s the p.d.f. of a non-central F with EI'IE d.f. and non-
centrality UE given by (3.18). To evaluate the integral, Patnaik

[51] gives the following simple approximation, which is quite

accurate for practiecal purposes, - f
£.F ]
1" 1-alf. ,f.) |
E{nz} = Prob Fe £ lz 2 = {5.%) \
108y £ + o |
z 1 .
where Ff £ is a central F varfable with fl,f2 d.f., and e
172 g
L
- Efl + 6&7) (5.6)
5 5
Fl + 25
Tiku [78] gives a better but more complicated approximation as
follows:
F. (E.ENY+ Db
2 1- 1*72 F
B(6") = Prob |F ,f, > — i (5.7)
where ; } [ HE 1/2
f==(f =2 [—-—ﬂ -1 (5.8)
22 Hg-ﬁkj
e= (%) @f +£, - 2 am
f o ; (5.9)
b= £,06,-2)"2c - 1 - §%/¢.) |
2.3 2
H o= 2(f) + 677 + 3(£, + 8 YE, + 252}{1'2 - 2)
+ (£ + 3655, - ?
2.2 2 CRah
K= (£ +87)" + (£, - 2Y(F, + 285",
1 2 1 ) (5.12)
If the null hypothesis 1s not true and two or more Eroups are
different and this difference 1s not too small the analysis of -

variance test should be able to detect this difference with a
reasonable degree of assurance. This raiges the following question.

How many individuals from each group should be selected so as to have
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v specified probabhility, say vy of detecting a difference 4 or moTe
el wonn any two ﬂrnupn?
Let us assume, for simplicity, that the sample size for each

group s the same, say n, so that

f,=k=1, f, = Nk = nk = k = kin-1). (5.13)

If two groups differ by more than 4, where 4 is a specified number,
we want our F-test to be able to detect it -- that is, to reject
the null hypothesis Hﬂ' of equality of a's -- with probability ¥ or
more. We wish to determine n consistent with these requirements.

Consider the simplest case, where say,
i s (5.14)
]nl “zl A

and

il &
= = = = — - — 5115‘
Gy = @, = ooy = 0 =0 =3 or @, =3, { ]

depending on whether O, > @, Or @; < Ga. In other words, two
groups differ in their effects by & and rest of them differ from
both of these by 42, resulting in

k -2
L nil[u1 - )
2 1
i - 7
o
nﬂz

2d°
Let us also assume tﬂat ui iz known or that a pretty good estimate of
it is provided.

Our requirement is then that
Preb (rejecting Hu'“ﬂ not true and & 1is given by (5.14}))

=X {5.17)

or that (from (5.6))

il RN % S S
Prob |Fp o > 21 : 22 - ¥, (5.18)
rh2 El + nA"f2a
where
(£, + na’126%)?
f = * (5.19)

[1 * !nﬁzflu;
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Tqualinn I{‘i.'lfl':l is =nlwved ‘I.fl"Tﬂrf‘-"I‘:"t‘,l" hecguss the unknown n oCClTs

¥ n. and compute f

in f also. We start with a trial value of n sa n?

the value of f from (5.19), Then since

Prob |F = F {f =y
fﬁ‘r? 1= 0t ? "

by definition of F (F_,f.}, we have, from
l=y" 0" 2

(5.18),

£
1F1-a"fp0f5) §

| R
£, + and 2t l-r 0" 2

and solving this for n we get,

n=say n, = leI { 11: ) £ 2”2

: S
1 rl ESTE 1

(5.20)

Using this wvalue for n, we once again calculate the left hand side
of (5.18) and this may still not be the desired y. Depending on the
difference between the desired y and the value obtained, we choose
the next trial value of n and repeat this procedure, till we find

an integral n, which gives the left hand side of {5.18) a value
which is close enough te the desired vy.

One can use Tiku's approximation or the Fearson-Hartley charts
2lso for this iterative process, The reader is referred to
Guenther [2&] for an excellent article on this subject,.

Since Bgpennsly uu,gi;un by (5.15),are at the center of Eravity
of 5485, the value nA" /20" of (5.16) is the least value of 5 among
ell pussible values of a,,8,,...,% subject to (5,14). 1In other
words, 1f (5.14) holds but (5.15) does not, the resulting 52 will
be larger than (5.16), But it has been shown that 5{52] is a8 mOno-
tonic increasing function of EE. Hence if the power is y or more for
§* it will be certainly so, for any larger uz and the value of n
obtained by solving (5.18) will be good enough to achieve a power

which is greater than or equal to vy, for any ﬁz subject to (5.14),

6. ILLUSTRATIVE EXAMPLES

Example 1.
The following example is taken from Remington and Schork [64]
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11t abont a new analgesic drug and it is compared with aspirin

ws  and placebo for treatment of simple headache. The measurements
vefer to the number of hours a patient is free from pain after
taking the drug. Inm this small pilot atudy, 2 patients are given

placebo, & are given the new drug and 3 are glven aspirin. The data

and calculations are shown below.

Table 5.3
Size of Group Growp
Group Observations Group Total Mean
Tlﬂl:l.'hf" u-\:-':l, lqn 2 1*“ n-i
I'..!-l."l-' DTUE 2-3‘ 3[5. 2;&; 245 ﬁ 11 |-1 z-n
Aspirin 3.1, 2.7, 3,8 3 9.6 3.2
Total 9 L7
n, = 2, m, = 4, n, = i, N= E.Yz
Total Corrected 5.5. = I:T.}I"E -
ij 3]
ij
.
- 0.0+ 1.0+ @20 + ...+ )
_(21.n?
9
= 53.97 - 52.32
= 11.65 .
Yf Tz
Between groups 5.5, = I —— - ——
n H
i i
. 2 2
(150} + {11:1} + 59551 - §2.32

= 2,02 - 52,32
= 9,70
Within groups 5.5. = total corrected 5.5. - between group 5.5.
= 11.65 - 9,70 = 1.95

The analysis of variance table (ANOVA Table) is
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Tabie 5.4
Source d.f. 5.5, _ M.5. 2 F
Between groups 2 9,70 4,85 14,92 *
Within groups fa 1.95% 0.325
Total 8 11,65

(corrected)
1f we take the level of significance a to be .03,
Fl_u{z,ﬁ} = 5.14

since the observed F, namely 14.92 exceeds 5.14, the null hypothesis
of no differences among the three drug effects is rejected,

Suppose, before even conducting the experiment, one is
interested in the comparison of the new drug with the average of

the other two, the contrast of interest is

Placebo + Aspirin
2

New drug -
ul + EE
e Nl Z ’
where e Lt refer to the effects of Placebo, new drug and Aspirin

in the analysis of variance model. The BLUE of this contrast is by

(2.28), the same contrast of the group means and is thus

0.5 + 3.2
2

The wvariance of the contrast is,by (2.29),

2 2 2 2
2, (-1/2) 12 cay®. e
=g 3 PemgT ey

2.78 = = 0,93 .,

and itg estimate from the ANOVA tahle is

g
llo 11 1
T EE—{within groups M.5.) = E%—ED.EESJ = .1489 ,

A 95X confidence interval for the contrast is,by (2.43),

.093 + \X.1489)(5.99) = (-.01,1,87)

and the F ratio for testing the significance of the contrast is by
(2.45),

2
LN | 566
0.325 o~

with 1 and 6 4.1,
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Since Fl_n{],ﬁl = 5.99, the observed F ratio is not significant

indicating that, there is no evidence against the hypothesls

(i | + X

Example 2.

For the analysis of wvariance model

¥ €45 {6.1)

i = l,_-q--,.k-; _j ‘l,--q,ﬂ.

= u +
Pl S

i

with the usual assumptions about € obtain an F-statistic for

13?
testing the hypothesis

H a, u o+ a, T

H: L — L B

Ay B A

are specified.

i (6.2)

whe e al,az,...,ah

Denoting the common value of (p + ui}fai by B, the revised

mocrsl subject to H is

- ﬂiE + E {i . ]-’I-Il-'k-; j’l.-".,ni) = {5‘31

Minimizing

i]

Sy 2
E?iyij - af), (6.4)
the normal equations are
n
EH
EL ay,.=IIa B (1i=1,...,k). (6.5)
1 fu1 1°1j 14 i '

The solution of this is

B = Lia
1]

2
¥, /LLa
2 R
= In

2
: 1“1T1.f3“1“i ' (6.6)

i
The 5,5, due to regression for this revised model is

SSR(B) = f IIa
19

= 2
- EEniul y with d.f. = 1 . (6.7)

1¥14

The 5.5. for testing H is, therefore, from (2.32) and (6.7)
S5H = EEE[u,ul,._.,ﬂk} - SSR(B)

T T, 0 i -'J‘ T ol —
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E

- EEEnia$ ) (6.8)

- P

L]
el
a

|
with d.f. = k - 1. The required F ratio is therefore
SSH(k=1)
SSEJ (n-k) by
where SSE is given by (2.33).

Example 3,

How many observations should be taken from each of four groups,
if the null hypothesis of equality of group effects must be
rejected with at least 90% probability, when the first three group
effects are equal and the mean of the 4th group is the quantile of
order 0.80 for the common digstribution of the first three. The
level of significance of the test is a = 0,03,

Fhe population means of the first three groups are p + g

B+ Tyy M+ Gy and are all equal to w + a, say, when ay = oy = a,,

The mean of the fourth group is p + a, and if this is the quantile

of order 0.80, we have

i
0.80 = [ * —L— expl- Hty-u-a)’1dy . (6.10)
- 2w

Putting (y = w=a)fo = z, we have

{uﬁdalfn 1 2
— -2 f2
0.80 = | B dz . (6.11)

Hence, from tables of a normal distribution

ﬁ'ﬁ-ﬂ-

= B4le2 . (6.12)

The non-centrality parameter 52 given by (3,18) becomes, for

n - e - n.lj* = nr

1
- 2
In,(a, -a)
1'% _
__—dz .53124n . (6.13)
HBI‘E fl = k—l - 3. fz_ - h{ﬂ-lj - i{l.'l.—l:'- (6-1#}

Using (5.5) and y = 0,90, as required in the

0.9 =|Prob F > sallt L
£iby 3 + .5312in »

Pfﬂblﬂh § wWe hﬂ.\"E

(6.15)
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(I TLE of )

(3 + .53124n)" 6.16)
3 4+ 1,.06248n B

f =

Guenther (24) has solved this problem and we reproduce his solutlon
here. We start with n = 26 as our first approximation. Then fz-lnn
and £ = 9,230. The right side of {(6.15) is then

Praob [%9.23&,100 » .ﬁﬂlé]

which, by interpolation between f = 9 and f = 10 gives .B876. This
iz less than the desired value 0.9. 5o we take now n = 27 and find
I? = 104 and the right side of (6.15) becomes

Prob [Fg.h93,lﬂﬁ = .ﬁﬁii} »

which is, by interpolation, again .9014. The desired value of v,
namely 0.9 i{s thus achieved approximately and so the required sample
size from each group is 27.

If more accuracy is needed, we may now use n = 27 and evaluate
the power function E[EE} by Tiku's approximation. It comes out as
L8926, Therefore, we try n = 2B again and use Tiku's approximation.
This family preoduces the value of E{EE} as 0,9044 and therefore
n = 28 is more accurate.

Example 4.
Consider the model

Vg = ¥y + ey (4= 1,,00,k; § = 1,“.,-.1’_} (6.17)
with 511 e n[{n,gi}. Let us rewrite the model as

Fij LG Yy + Eij = (6.18)
where

TR Eniuifﬂl Yi - Ui = Y cﬁ.lq}
Thus (6,.18) iz a linear model with restrictions on the parameters,
namely

In111 = 0 . (6.20)

Since, in the model y = X8 + ¢, XB is estimable, the ui's in (6.17)

are all estimable and hence u, as well as all the Ti's are estimable.

This may appear as a contradiction, when (6.18) is compared with (2.1)
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where the ﬂi'ﬁ are not cstimahle, This {8 no contradiction, because

the v, "'s are subject to (6.23) but the o, 8 have no such restriction,
The 1'1{1'3 are k in number, while the 1,"5 are actually only k-1 as

any one of them can be expressed in terms of the others by (6.23). y

To find the BLUES of i, Ti‘ wie must minimize

) UL
Mot LI Ly = = }
gy 4 i

but

¥y (6.21)

Ll i : = -_ E -
l;l}ij i \iﬁ + AEn
vhere } is the Lagrangian multiplier, corresponding to (6.23). The

normal equations are

Y = Nu+t:

e -+ ni‘li tEtEE}

Ti. = ni{u = "|i + h}' {i = l.-ql,k} " {5123}
Using (£.23), these reduce to

¥ "y (6.24)

Fg, "Mt 42, (1=1,...,k (6.25) “
and thus we find

g S, SR KraLt)

Multiplying both side by By and summing over 1, we find

A= ﬂ i {ﬁtz?}
yielding
Ti o !1- N ?i- ' B2

Thus, though (6.21) looks similar to (2.1) and the solutions (2.12)

and (6.27), (6.31) are also similar, the difference in the models

should be understood. The solutions look similar, because for the

model (2.1), we used the additional equation (2.11) which is similar

to (6.23), Had we used any other additional ¢quation, we would have

got different results. 50 also, had we uged any other definition of .

Ti'u such as

= Euifk. Yymag e,

we would have got different results.
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But whether we wse (6,21) or (2.1), we get the saame BLUES for

Fig J = g .

i i

Corresponding to the k groups in an analysia of variance solu=-
tion, suppese we have a varlate z which has the value z, for members
of the first group, Z, for members of the second group and so on.
rind the regression 5.5. of y, the response variable on this variable
z and compare it with the ESR{u,ul,.,.,uk) of (2.32).

The regression model for v on z 1is

- —_ .29

yij a + E{:i z) + Ei] (6.29)
where K

z = }.'nizifll, H - Eni & (ﬁrlﬂ]
Then, the normal equations corresponding to uu,ﬂ are

Ko

—_— o z

Ely (2 -2z} = B En (z, -z)

19 ij 1 i 11
and TE - o

S5R(a,,B) = —*—+ 87In, (z,-2)" . (6.31)
We find

ESR{u.ul,.i*,nk} - SSR{uD,E]

2 2
—.Ii; T.. = -31
=(E—ge=- 53 -Bn(a-
1 1
(in,y, (z,-0)°
- Eni{}'i -y .'!'z - S8 T !‘2
:nlfti-;3
[En, (y, - lzllﬂn (z 4:12]"[5ﬂ (z 4;1]2
) d R 124 Gl el
- 2
Eni(:i-:J
g 2
i Enlﬂhi - EEE&E!}

— " (6.32)
I{nij{:i-:}
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where

ﬂj = I-"I-I'ITH{!.-‘_I r—!_."“‘J

— —
hi rﬂlfﬁi—z}

By Schwarz's inequality, (6.35) is always non-negative. Further,
the difference will be gero, only when n"u are proportional to the

b."'s, that 1is

i
Y =¥
e = constant, say d
z, - 2
i
or that
= + d(z, -z
Fi- ¥ {zi z)

There will then be a perfect correlation between ¥y and z
L = 1,...,k).

i

Exercises

1. In a one-way classification with equal number of observations
in groups, 951 confidence intervals by the Scheffe method are
cbtained for contrasts among the group means., One of the confi=
dence intervals turned out to be (a,b), where a,b are both positive,
What can you then say about H, the null hypothesis of no differences
among the group means?

If H is not rejected by the F-test at the 5% level, in the
anzlysis of variance table, what can you say about the signs of a,b
where (a,b) represent the 95% confidence interval (Scheffe's) of a

contrast?

2, Consider the one-way classification model

= u + ui + Eij'

1 = LoseigP
3 =1,..6,9

yij

2

The error 5.5. i

2
SSE = EE(y,, - v, }*-.
i 4 i.
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v TV Tt 0 I PK
s part of the error 5.5.
0 |

A is a part of S5E 1f A and 55E = A are independent x 7
crariables.)
The following table gives the means, group totals and sample
sizes of an experiment involving a control group and & Crestment
gTOURE .

Table 5.5

Control Treatment 1 Treatment 2 Treatment 3} Treatment &

Yean 70.1 59.13 58.2 58.0 LT |

Total 701 393 582 580 Bl
Saople 10 10 10 10 10
size

The total corrected 5.5. with 49 d.f. 1s 1322.82. Carry out an
analysis of variance of the data. Subdivide the between groupa 5.5.
correspond ing to the following comparisons:

{a}) control vs. other groups

(b) treatment 1,2 and & vs treatment 3

(c) among treatments, 1 2 and 4.

Obtain a 95X confidence interval for the comparison treatment & =
mean of the other ] treatments.

What sample size would you recommend for a future experiment,
if a difference of 3 units or more must be detectable wirth at leasc

95% probability, between any two treatments (including the control).



