


! k. Chapter 2 The General Linear Model

b'= Xyt 3Xpgy e ani(n) C N | [_Eil) =a'x, (1.5)

l_z'(,.) ;

and & linear combination of the columns of»\'x is a column vector,
+ ...+ x = Sooesx AT -5
. ‘ hEE ‘[51{ .zpl L : R o '(1.6)

B = b + 2%, 1

- Our objective is to estimate (obtain both point estimates and

=

interval estimates) the unknown parameters Bl,...,B if possible,
or at least to estimate -hose linear combinations of these para-
mete*s, that can be estimated We also wish to estimnt:e 02.

}u—:wher objective is to test suitable statistical hypo:heses “about

B or at least functi ons of B8. ;
Usuaily n, the numbers of observaiions, is larger than p, the

" number of unknown parameters, but we are not assuming this. ‘The

_rank of the matrix X is assumed to be r and .obvi'ously
! r < Min(n,p). : ; g o (1.7)
A - i : ; ) e
=p<n, k ' : (1.8)

‘ ..hen ‘the model (1.1) is said to be a "Full Rank Hodel", otherwise
1r is described as a non-full rank model.

in order to estimate b we need to determine a B which is a
. functien of y and other known quantities like X, such that B is
"(lose" to 2 in some sense. In that case, if we substitute §_ for 8
i (1.1), y will be "close” to Xf. The difference -
z-Xé=g : i ._ (1.9)
1s called the veotor of "residualsv", while ‘the difference :
'. Y= XBia= E = P i 2>
;o‘ fhe ohservations from the ."model value" Xff is called the vector
,°f "errors". One method of choosing 8 is to minimize the sum of
'squares (5.7.) of the elements of e. This is the well known method

of least squares, wnd we shall investigate the properties of esti-

mates derived by this method. - To obtain 8, using the method of-
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Section 1.. 1ie Gemeral Lir:ar Model 15
least squarcs, dif[ercm.lu “
[CHERER (A= xe) (v-x

= y'y - 28'x'y + g'x'x"_g_, (1.10)
with respect to -the elemenis of é and equate them to zero. (‘-v'ixl.le
simplifying e'e in '(1._10). tt should be noted that _Ei_'X'x = y'X8).
Observe that, / ; :

% (e'e) = '-zx'1=+ 25K E.

Equating this expression to zero, cancelling oniy the factor 2 [in
some particular situations, it maz, be possible tc cancel any other
factors also, but it should nct be do.e now to preserve some

important progerties, as will be explained later] znd tfansposing

* the part containing known quantities like X,y to the left hand side,

we get the equations

X'y = (X'K)8 .- (1.11)
These are called "Normal.. Equations"”. They play 2 very important and
useful role in the theory of linear models. They contain a wealth
of information as we shall see later. The vector X'y will alss be
denoted by g, with elamean 1l,q2,...,q . These are known as ..he

left hand sides of the normal equations and the zlements of ¥'X B

. are called the right hand sides of the normal equations. The matrix

X'X which is pxp will also be denoted by S and is a symmetric matrix,
whose rank is also the rank of )i, namely P. To see this, we observe
that if a vector a is orthogenal to the rows of X, then Xa = 0,

which fmplies X'Xa = 0, or @ is a orthogonil ro the rows of X'.\(.v
Conversely if X'Xa = 0, then @'X'Xa = 0 or y'y = 0 where 2’_ =

but.y'y is *(]2_ e yz and so y or Xa = 0 or a {s orthogonal to
the rows of X. Thus X'X and X have the same “deficiency” matrix

and hence the same :rank r. Also this shows that the vectar spaces

_of the rows of X and of the rows of X'X are the same.

Can we solve the equations (1,11), which are apparently p
equations in p unkn.owr:i;? According to the theory of linear equa-
tions, a necessary ‘and sufflthent condition for a solution to exist
is the "consis tbm.y condit Jon

Tank[X'X,X'y] = rank (X'X] . 3 i 1412)
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18‘ Chapter 2 The General Linear Model

For illustration, consider the matrix
[i5 sy
} 6 1oi oy
{838 35)

- =

'i‘he eiua-ticns will be

A=

jxl + 5x2 = Uy s : . {
Y e R \
le 4 10)(2 Uy o : ;

9x1 + 15:;(2 =u

3 3 G0

For consistencv, one can easily see that uz must be 2ul and u, must

be 3u . Actu:lly only one of these three equations is useful the

other; are derivavle from it and provide no additional useful infor-

mation. So let us take only the first, namély 3):1 + sz =u, To

“solve this, as we have 2 unknowns, we need to take one more equation.

It must be "suitable" and "consistent with this. For example,

12’1 + 2()x2 = Lul won't be suitable, as it is onl& a multiple’ of

3x1 + sz = ;. Alsq 3x1 + sz = 2u1 won't do, as it is 1ncons:ls-

tent with 3x + sz =u. ‘We can take X, = 0 as our additional

equation ani now solving 3x1 + sz = Uy, X, = 0, we get a solution
X =3 + Ou + Ou

I8 3
X, = 0:_'1 + Ou + 0u3 \‘(\
and hence

e &) Y J
11 { (1’\
1=y 0 0

2 ' g‘j\\
o0 o o} \)
1= i i

1= a generalized inverse of A. ,
We could have taken x, = hz as an additional equation, and
then sclving 3x1 + Sx =y, xi = u2, we 3et a solution ~

1 5
Ay et 3% D

)
4
3
5
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Section 2. A Generalfzi. ‘nverse of a Matrix 19

o W=
1
= Wi
o
LT,

is also a generalized inverse of: A. ‘In fact we can obtain an
infinite number of generalized .nverses as we can choose our
additional, sﬁic;:ble, tonsisten:ieqpa:ion in 3 variety of ways.

We now give another definition of a g-inverse of A.

Defiritior I1.
Any nxm matrix A~ satisfving the relation #A A = A is “afined

as a generalized inverse of the mem marcix A,

We shall show that the two definitions of A are equivaleat.
Suppose definition IT holds. Then

AATA = A. : ; (2.5)
So, ;

AATAX = Ax . o k(208
But if Ax = 31 is a consistent, syste'm of equations, we can sub-
stitute v for Ax on both sides of (2 6) to get

AN u=u,

showing that A u is a solution of Ax = u, for =vary vector u for

which Ax = u is consistent. . This shuws that. ixfinition I holds.
Conversely if Definition I holds, take u to be the i-th column
vector of A (i =1,2,...,n}, denozed by ay;-. Since

rank A = number of in..pundent columns of A

= rank [4, 31],

the equations

A5=_1(1=1,...,n) -
are obviously consistent and so by Defirltion I I, 8 51 is a soluLicn :

and hence % : 3

M_Ei !-‘11 (Lf=208n) :
Putting all these n results together in «utrix form as
AA™ [al,az,...,a 1= (a
we obtain

ALTA = 4,

2,39,.-0,2 1,
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T“’ ay0+esd, aTe colums of A, Thus Definition I follows from
1.

e finition There are various methods available in the literature
for obtaining a g-inverse of a matrix. However, for most of the
;nnem tn:o arise in the applications o the theory of 1inear
;m.dels. the above method of solving the equations Ax = u with the
E‘""p of additional cquations is easy and useful. Some other mefhods
are described briefly at the end of this chapter in Exe cises and
;bg:p]\-:n:s and are also avail ble in the list of references, at

b-e end of the book.

i We now define the nxn matrix H given by

[ AA=H . E 2.7
‘hnd esteblih some iImportant properties aséociated with it. First

AHE (2.8)

- from (2.7) and definition IT of A~
Fropesty IT. Hz = H

5 i . “ (2.9)
lso frllows dire-tly from (2.7) as

g H = MH = ATAZA = ATA = W,

Juec to definition IL again.

F rank H = rank A = trH (2.10)
shere tr 5 stands for trace of H, which is defined as the sum of

e ¢iigonal elements of H and the operator trace is invariant for’

4
E;'c_\ic pirmtzticns, that is
, tr PO = tr OP, and 4

(2.11)

(2.12)
» since rank of a product of two matrices is less

tr POK = tr QRP = tr RPQ .

e prove (2,10)

hian or equal te the rank of aay one of them, and since from (2.8),
= A, we “ave " .

ran’. 4 < rask K, (G D
Mt from (2.7), using the same result about ranks

rank H < rank A, 28
e from (2,13) and (2.14)
3 i:nk # = rank A, :
£ 1% vl kaown resule that ‘the rank of an idempotent matrix is

e

*
4

S 9535

Section 2. A Generalized fnverse of a “itrix 21

equal to its trace. Since, from (2.9), i is idempotent, its rank
equals 1ts trac and this proves (2.10).
ﬁ‘l; Some authors call a matrix P idempotent enly il P is symmetric
and Pz = P, We have not included the condition of symmetry in the
definition of {dempotency. The matrix H may nct be symmetric ai A"
may not be. Even then {t r30 be shown that tr ¥ = rank P, {f I =P
because P can be expresscd a3

L diag (51,...,5n)x."‘,
where diag. stands fc a i :conal macrir with dia ona: elements
specified in the adjoining parentheses. Then since P2 + Py it
follows that 62 = 6, (£ = 1,...,0) 1,e. each ¢, = 1 or i0 ard o8

tr P = trfL-diag (51,....6“){1}

- ':\r{L—]'Ld{ag (,1..‘...6n)}by (2.12)

=7 5 2
l .
1
= number of non-zero 's ©

and rank P = rank diag (61,.'..,6n), as m..tipiication by a non-

Thus rane P 1is the number
¥

This pre.23 tr P = rank ¥ 1f P

singular matrix does not alter the rank.
of non-zero é's. P,
We now prove that the zgenersl solution of the system of

homngeneous equations

Ax =0 €2.13)
can be expressed as
. x= (I-H)z , (2.16)
where z is any arbitfary ‘.'ec:o'r. ¥
Proof: Observe that .
A(I-H) = A - AH :
=0, by (2.8}, (2.17)

Hencg each of the n colum:;,‘ll,h.,,..'. ,_hﬂ of I-H are orthogonal to
the rows of A. But
%
(I--il)2 =T -0 -0 1

=1 -H, due ©5 (29 {2.18)

and so, rank (I - H) = tr C[ - ) ; :
® tp 7} -trH :

SR e Zicd (2.1%9)



Chapter 2 The General Linear Model

'§‘ where r = rank A = rank H (scc 2, 10).

&

Only n ~ r of the column

vectors Ll,..v Lk are linearlv indeperdent, which we shall take to
be h‘,...,_nm _p vithout loss of generality. Since A 1S an wxn matrix

of rank r, its rows are u-vectors and therefore we can find at

p ] most n - ¥ lincarly 1ndependeut vectors orthogonal to them. h
: « hy,...,
| h._, is one such set. If there is any other vector orthogonal to
‘; *iie rows of A, it must be a linear combination of hl' h
| ceoh .
3 From (2.15), x is crthogonal to the rows of A and so any vector x°
' satisfving (2.15) must be a linear combination of hl’ 05 But
'—n-t

E this is also cquivaleut to saying that x will be a linear co

¢ e bt s

‘ ion o b ’hn because l‘n-r+1""’l‘n are linear combinations of
: b—l""’l}n—r' Hence x must be of the form

XE= zlhl 5 Gs o +zn]_1“

= (b,

mb ina-

hipoce i/l
= -y Rz - : -*(2.20)
for some z = |z 102y ]'. Conversely, if (2.20) holds,™
Ax = A(T - H)z
= (A - AH)z
= C lue to (l2.8).

3 This shows that th.e general solution of (2.15) is given by (2.16).
- We now extend this result to obtain the general solution of the
~ non-homogeneous consistent equations
f Ax = u '
of (253 SIRTIE S A . )
% A 1is any generalized inverse of A, by Definition I
of £, Au, is a particular solution of tz.l) and therefore
A(}_-A-_Li)=|_1_—u_'

= ¥

, ;
. which s system of homogeneous equati.ons in x - A—g_. Tﬁerefore, =
by (2116), its general solution 1s given by ' ;

X - A_.‘l.’ (0 H)z ,
where-from it follows that the general snlution of (2.1) is

i X =AU+ (I - Bz, (2.21)

© 3. SOLUTION UF THE NORMAL EQUATIONS
W

€ are now in a position to apply the results of Section 2 to

nteT ran

e

R T

" Proof: From (3.5), SH = .

Section 3. Solution of the Mormal Equations 23
the normal equations (1.1}, i

X'y = (X'%)3. (3.1
A particular solution of truvae g'qua:iom will be

B> SX'y or 8Tg S (3.2

where S~ is any g—inve'r'se ci § = (X'X). The general soluticn of

(3.1) will be denoted’ by & zlven by

B=8+(I-Hz, e (3.3
where -
=S§ (3.4)
which 1s a pxp matrix and pessesses the properties
H2=H,$H=S, rank i = tr H = rank S = rank X = r, (3.5)

due to (2.8) - (2.10). In Section 2, the matriv A was any mxn
matrix but the matrix S of che normal equations is symmetric (being
X'X) and hence we can derivc a few more important results about s”

and H here. These will be required again and again in the fucute.‘

" Result 1. !f S is a g—iuve!se of X'X = 5, its transpose

(87)' is also a g-invseta.

Proof: By Definition IT
SS7S = S. : T :

Taking transpose of both sides and noting S' = S and (xsing :
Definition IT again, it follows that (S7)' is also a g-inverse of
S. ¢ ,

X Result 2, X = XH, (3.7)
'l':“u:'efoxl'e
0 = (I - I)'(S-SH) i
(T - H)' (X'x-X'¥H) |
= (I - H)'(X' (%=X}
(X-xi) ' (X-X1) . . : (3.8)
.+.,n) on both sidas of

Equating the i-th diagonal clements (i = 1,
(3.8), we get ‘ ‘

0 = sum of squares of e elements in the i-th row of (¥- XH)'
for every i. This proves that nvery element of X-XH is null,
proving (3.7), .
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B - /
seguit 3. T8 5 and Sb 710 two g-inverses of Y x

. 3.9)

Bof: Let I—‘a - Ea’;a and H = 8§

k= - X5 a'X
e also X = X, = KKK

X5 X'X = K8 K'Re
e (35 X% = RO = 1)
b a b

2 A Syt o oxs Ty
o )(XSaX xsbx | B

in the ) -ocf of Hesult 2, we now equate diagonal elements on

. 8 B - R

goth sides tou conclude (3.9).

¢ @ corollare of this result, due to Result 1, we obtain ~f. -
darw, ¥STEL > R(STHRN, (3.10) X¢
. that ¥§¥' is svmmetric, whether S  {s symmetric or not. ;'.»
Sesuit 4. A wolution of the normal equations (3.1) is unique \\:"

, snd only if rank X = rank X'X = p. %r\

Thi- follows from the fact that the general solution (3.3)
:11] 1ot contein the srbitrary vector z and there will be a unique
solution of (3.1) if and only if I - H = 0, that 1s

=35 8,

: wis will be .0, only if § is non-singular and has a regular
e s, : Hence the resylt.

In general, thercfore, for 8 non-full renk model, there will be
‘5¥inite number of sclutims of (3.1) for 8. However, if ve do
not iomw n all the elements of £ but only a' linear function of
IR 91 & ouii APSP % (3,11)
(3.17)

LI LS ] 5
: ressfons

;Leu for di!:erenr sulutiuus B(”,l“),.-., of (3.1), the exp
: _())."’ (2)r " will be different, As (3.3) represents the

general fnulu{iun of (3,1), we will then have

A ﬂ = “.i(“ VI e H)_‘(“. ® 1,200 2 (3.13)

Then, from (3,7), ,

Seetion &, Fatimahiliey of & [ ionar Piemct rle ¥ dion %

Thie shows that [F and eaiy #F €T < #) = &, {3,170 =il aet
fnviive the arbitfary 2 ”'.» '_'_1“ i 11 all Y = fie seme rIlae.

We, ther-faré get the follawin thearem.

Pheorem 1. A aecessary ani sufficient conditicn for the

expregsion 1';, where d is anv colution of is mecvol sguations
(3.1) to heve a wnique value is
A * BN, £9.18%
= o L 2 &
wherte 8 # S 4, H %S S, and S g ¢ g4~.nvarze of =,
&, [ESTIMABILITY OF A LINZAR PARAMETRIC ¢ Ry

if p_ 1s & solutfon of *'a sormal _equat ions £1.11) . there ars
Zo The firet

i¢ that 5 1s not unique. There could be soversl e lations €o ©

two du’ncultlu that arise in oslag § for estimat oy

(1.11; in general. The sceom! & that
E(3) = B X"y
-85
= HE , X €413
which 1s not equal to 3 ta asnerel. Thue ; ix not wbilased for @,
in general. We, therefore, adaclon the tdea of ca imating all (ne
clements of £ and see whether Wi can estimite af loret eome }in-ax
functions of them. For that we introduse the follosing defimit: n
of estimability, which fs odvinuiy fatuttively wat jefactery,
Definition of Batimahiiity - a linear paramotric funclfon:
A linear paramets.: functt oy X'8 where
A= et b (o3

s satd to be estimadle £f rhure ewlste av Least oo linesr fusc:fon

of observations u'y, wher
“ " [“‘v‘--uu ‘. - (“w.i\
such that Blu'y) ts tdeneically vqual to t'7,
By “identically equal te '' "] we meas qual t
may be the value of 2,  We denate rals By
Bla'y) = 1%, ‘ ;
and them by (1.1}, substituc lmx’;éE(ﬂ, v hive
El"i s 3}:2' 2
It then Follovs that

Y, whateser




o
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= a0 (4.5) : As an {llustration of the use of this condition, let us check

[We caa successively take 5 to be [1,0,...,0]', [0,1 503005000 i whether the p parametrlc fuictions X'X8 are estimable. Observe that

...[0,0,...,0,1]", to show that each element of u'X is the these functions occur in the right hand side of the normal equations

corresponding elements of )' and hence u'x = '], : 8 (1.11), except for the only difference that 8 has a circumflex on
This means (see 1.5) A' is.a linear combination of the rows of ; it there. Since ; :

. Conversely, if u'x = ', £ (R'OH = X'%, (as ¥ = X due ta (3.7)) 4.7)
Flu'y) - u'Xg =A'8 . 4 t:- every row of X'X satisfies rhe necessary and sufficient condition

and by the definition of estimability )'8°is estimable. We thus : g5 (4.65 of theorem 3 and heace ¥'%3 are all estidable.

have the following theorem. The definition uf estimability guarantees only the existence

of at least one unbiased estimatz of an estimable parametric 1
Theorem 2. . A necessazy and sufficient condition for a linear \ Sstionesunsia estimace ol ¥ |

par!tﬂecric function 1'8 for the model (1.1) fo be estimable is that
ll

RS O

function. It does not expl icitly give 2 method of obtaining e B
A > i nor does it say that it is the "best" esrimatc. Ry "best" estimate

s 2 linear combination of the row vectors of the matrix X. f v > : %

of A'B, we mean a linear function. of observations that is unbiased

Thus toc example, X""B vhich are nothing but the right hand for 1'B and has the smallest variance.aﬂtang all such unbiased

sices of the normal equations (1.11) with the circumflex in B

i
i
linear estimates. We define this- fomau.'» below: 5 l
reroved, are all estimuble. 3
DEFI‘NITION OF A BLUE. :
Since tne row vectors of X are x(l)”"’—(n) (see 1.4), tuis A Tnea: function-_b_'}'_ of tiie observations y fn the model (1.1)
theoreﬁ also means chat the parametric functions ‘((1) (2)—""' : is said to be the Best Linear Uvbiased Estimate (BLUF) of a para- =
—( 2 “nd their Uuear combinations only are estimable. metric function A'S, if it is unplased for A'E and its variance is

1f (4.5), which is a necessary and sufficiant condicion of
‘estinability of A'8 holds, it rollows that

the smallést among.all linaar unbiased estimates of '8,

i In the next section, w» shall deal with the problem of
A'H = u'xd > g obtaining the BLUE of an estinable paramctric function A'B.
=u'X, by (3.7) S : e : :
=§ e O 5. THE GAUSS-MARKO:F THEOREN
and conversely, if A'H = 2", then ) . s The following theorem, which is known as the Gauss-Markoff
A=l SES: 3 theorem is extremely importgmt In the theory of the general linear
" = ;'s"x'x ; : : : model, because it provides an easy method of obtaining the BLUE of
= ;'X, with u' = A's”1x*, $ ol ©  any estimable parametric function A'8, in the model (1.1).
.That is, 2' is a linear combination of the rows of X. Hence we have Theorem 4. (The Gauss-¥arkof 'I‘heorc:n)
an alternative necessary and sufficient condition for estimability For the nouz_l, Y= Xbi+ e, p(,_) = 0, \,'(e) = T8¢ vhere Y is
B 2 2 #hich is restated in the following theorem, observed, X is known and 8,s e are unknown, the Best Linear Unbiased
Theore: 2, A necessary and sufficient condition of estimability Estimate (BLUE) of an estimhle linear p\\ranetru_ function )' B :
of a parametric function X'8 for the model (1.1) is / 2| (where A is known) is )L'é £ being any salution of the normal equa-

AT = (-10.6) tions X'x = X' XB which are ob:ained ‘y nlnxmi in;, the quantity 5

e (x-x-*) (x-xa)

 FRARORA  rem S5
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"with respect to the urknown vector 3. :

" proof: First observe that l'ﬁ is unbiased for X'B and is thus

| e15pible for being BLUE. 9

E(l'i) EQ.'S Tl (as B =S B y, any solution of (1 11)) .
= X'S X X8
= \'S S°

H

B (as A'H = )', due to estimability of A'8.) (é.l)

See (4.6)

w

Al
i

1t remcins to prove now that the variance of }fﬁlis not'larger than

that of any other unbiased estimate of A'S. Let u'y be any other

. unbiased estimatce of A'8. Then

b o -ume s,

. identicall: in 2, which implles

u'x = 3. : ‘ (5.2)
Observe that

wy s (u'y - 1D + AR

i and thercfore

Vie'y) = V(u'y-2' B) + v B) + ZCOV(U y-A'8 B X'B) (5.3)

: We will now show that the last :erm in (5.3) ic zero. ;

Cov(u'y-2 5 “B)

= Cov(u'y - _A_'Si-x;y_,_‘)_\fs'x'x)

= Coviu'-3'" "7y, (A'SX)y}

= (u' - ATSTX)V(Y) (A'STXY)!

= (u' - A'STXDX(T) A 2

- (' - A'STXDR(STI'A o

- (u'x - ARSI o

= Q' -2 (ST ') 6%, due to (5.2) :
=0, i (5.4)
. as 1! = )'E, this being the necessary and sufficicut condition of

? estimability of i'8. Substituting (5.4) in (5.3) and, since the

f variance of a variao‘e is non-negative, we obtain

: V(e z)'> ‘f("") . pe (5.5)
| This proves the Gauss-Markoff Theorea,

A
8
5
i
&

PR e

~ has both mean and variance equal to’ zerc,

Section 6. Variunces and Coviri.uices of BLUES : 29

Incidently, observe from (ﬁ.}) that the equal to sign in €559)

holds, if and only if e 7
Vi'y - '8 = 0 .

But, ; o
E(u'y - A' S) =)\'g-28=

Thus if the equality sign in (5. 5) nolds,

(5. 6)

(5.7)
the difference u'y - 2B
which implies that u'y

and A B are both identica‘, with probability on. In other words,

fA'8 B is estimable, )’ 8 is its BLUE and if oy other unblased
estlmate of \'B has the s:me variance as 1A' 8 it cannot be diffgrent
from A 2. We, therefore, conclude that the BLUE of an estimable
parametric tunekion is unique.

The Gauss-Markoff thecrui thus provides a very convenicul
method of obtaining the BLUr of an estimable pa—ametric function
A'8. Obtain any solution £ “ »f the normil uquahlnns (1.11) and sub-
stitute B for S in the paraw(tric function to get its BLUE.

Suppose 5(1) and 5(2\ are two di(fcrent solutions of th normal
equations’ (l 11), If they are substituted in an estimable para-
metric function 1‘ﬂ appar 'r;y it looks as if we have two different
BLUES, namely A' g(l) (2) But it is not so. They are the
same., Since the BLUE is unique, as we proved earlier,’ they must be. .
the s;me. But this can be se=n alteratively also from theorem 1,
which says that Afé is unique, for solutiou'é of the normal equa- -

tions, if and only if any }' = A'H and this is 50 bacause A'g s

. estimable and A' = iﬁ is a necessary and sufficient condition of

estimability of A'8 by theovem 3." The condition of uniqueness of
A'g and of estimability are Lhﬂ‘kame. :

The reader shoﬁld be warned, however, that if A'8 is not
estimable, substituting two different solutions may résult in two
different cxpressions.

6. VARIANCES ANL CUVARIANCES OF BELTS

'

Since the variance-covaric.ice matrix of y is o1, 1t follows

that S ;
L NE) SR
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= sTXX(ST) 'éz
= S-S(b-) &

(6 1)
‘It should be not:iced here that’ SS S =385 by definicion of S~ but

that does not mean S'SS™ = S™.and also (S7)' is not cessarily S .
'Hence (6.1) does not, in general, simplify further é:&gene;:al.
i V(8) # 572, ; ;

: (6.2)
Now, if 1’2 is an estimable parametric function A B is its BLUE

v(2'3) = A'V(BIA
= A'S7TS(ST)"ac’ (6.3)
= A'STH'A o, as 875 = H 0
= A'STa ? X : (6.4)
bes A'H = A", Gue to estimability of A'B. :

We would have got the’ correct result (6.4), even if we have

erroneously taken V(n) =8 02. This shows: that S 02 acts as the

jvariance-covariance matrix of B if and only if we use it for

:I.ndinE the variance oi the BLUE of an estimable function. We will

p'mmy this fact to avoid some algebra .in future while finding
variances of BLUES.

If the model is a full rank model obviously
1.2
'S o

is the’ correct variance-covaciance matrix of B.
If in (6 3), we write S’S = H, we find o
VO'8) = XH(ST)" A o : ’

= A'(s” )'A c 5 as A‘H =2,
From (6.4) and (6.5) we obtain

V(A'p) = DO ALSHITGE, (6.6) ,‘\

If we consider two BLUES, say )\(‘)B and )‘(Z)B of two est:lmable
azametric functions A

(6.5)

‘1)8 and )‘(2) , their covariance is given by
Cov(A(l)G A(Z)B) = xmv(e)x(z)
= )\( )S S(S )! X ) g by (6.7) .
= )‘( SH )‘(2) s as S-,-S = H, x
At - 3
20)S A7 s am Ny = Ayt & G, ”
acts as the varlance-covariance matrix of B
180, writing §°S = H in (6.7), the covariance is also

howing again that $ o

Section 6. Variances und ¢ iriances of BLUES

PR

Cov()‘(l) (2)8) = X(l)ll(s ))\(2) 168

- Ay “(2) s
showing thatﬂ

LRy ey (S

- and denote by A, ‘the matrix e

My
i o (L2 :
b X
m,
b

= A,
4 " as each )‘ii) satisfies )!

e

The variance-covariance matrix of AB, the BLUE of hg
V(Ag) = ASTA'G? or  ACS )2

Ry o>

where we have used the fact that 3-02 acts as the variance-
covariance matrix of 8, while dealing with BLUES. If the m
parametric functions l\g_ are linearly indepéndent, that is if

H rank A = m ,
is nonsingular.

equal to the rank of any one of them and since, by (6.12),
I\-AH=I\SS=(I\SY.)X, :

it follows that :

H ; * m = rank A < rank AS"X'

: Hence, . ;

< rank A = m

rank I\S-X' =

foll.owmg (1 11)) § 2 ? : :
e Como= rank I\S “X' = rank (AS "')(AS X')!

= rank ‘ASTXX(ST it
= rank AS: AS(S, ) ,A" R

If we consider m euimable p..:.m....ric functions A(i)s (i=1 2,...,m)

all the m parametric functions will be expressible together as A2 and

Ay ) (‘L)' the condition of estimability..

is therefore,

2
then we will show now that the varinnce—covariance matrix AS™ I\ 0

Il‘ Since the rank of ‘the product of two matricas is less than or

and as rank of PP is the sane as the rank of P (see the uiscuqsinn



Thus A5TA, MWhieh {8 an mxm matrix, & non=alngular,

\ 2B A'STX'y

Chapter 2 The General Linear Model

= vank ASTH'A', ap 875 w1

» rank ASTA', as A = A, k6.1,6)

| 7. ESTIMATICY SPACE

1f 2'8 is cstimable, its BLUE i X'B, which can be written ag
‘

-Pﬂ,

g ' NG RO
 where ‘Q' - >"' and X'y is ulro'\dy defined in aectlon 1 a¥ the

- vector ¢ with clements ql,qz,....q . The BLUL A'r’ 1s thus 4 linear

combination of the "Left Hand sides’ ql,qz....,q of the normal

aquations (1.11), Conversely, if we consider a linear combinntion

Pg-'911+...+ﬂ.q

of “he left hand sides qy of r.ha normal equat Lonc, it 1s the BLUE of
Lte ‘expected valua, “ecause

E(q) » ECL'Y'y) :
“ 2'XXB (7.2)
ant by the Gauso-Murkoff Thaorem, the BLUE of A'X'Y0 Ls

E’X'x_@_ . i’x'x
“2'q, (as X'XB = X'y due to (1,11)),

{Obviously, 4'7'%8 1s estimable, because the condition of estim-
ability,

R . RN
is satisficd because of (3.7)]. S0 we have the following theorem,

Thoorem 5. For the model (1,1), the BLUE of every estimable
parametric function 48 a linear combination of the left hand sides

Z'y = g of the normal equations and conversely, any lincar combina~-

tion of the left hand sides ¢ of the normal equations is the BLUE
of {its expected value,

As a corollary of this theorem, ‘we state the 'to‘llowing result,

Corollary 1. A nccewsary and sufficient condition for a linear

- perametric function '8 to be estimable is th'u‘t: M 18 a linear
~ combinatlon of the rows of X'X,

The procf (o11ows from the fact thut the rows of ¥% and the rows

|

SR

— e 3,

e
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of %'% span the same vector space, a result proved fn section }.

The following theorem 1o obvious but we state it for
completeness . :

4. Theorem 6.  The BLUL uf any lincar combinat fons of estimable -

paranctric functions is the .ar: linesr combinat fon of thelr ELUB'S.

In other words, if );x)’* (L= 1,7,...,4) are ail eatimabile, tnx'

BLUE of :
- X e (7.3
AP Syt F bl Fooend ed® / :
1is ; G
- res, 27 <8, 7.4
LY EREVN ERRTAE * it 72
The proof follows from the f ° Lhat A’ = 3'H 4 wach -;"'(1) sat{sfles
2!

Atgy " )'(i)“ and by thc Cauns-Markoff Theorem, -'Z is the BLUE of

%/Theorem 7. 1f every VLUE 48 expressod in terms of the observa-

tions y as a'y, the coefficieat vector a 18 a linear combinatiorn of
the colurns of X and conversely every lincar function a'y of the

observations such that the ccefficient vector 2 §s a lines- combina-
tion of the colurmns of %, is the BLUE of tts vipected value. o

Proof, 1f )'g 1is estimable, its BLUE is
VB = 1SXY
woaly s . 7.5
where - £ ;

amasT .
= &L, (uith 7 » (5T)'Y) (7.6)
showing (see (1. 5)) that a is,a linear combination of the columas
of X. Conversely if a = %,
E(a'y) = a'xs
= L'%'%8
and the BLUE of A'X'XP 1s by the Causs-Markoff Thuorem, -
x'x'xe = '%'y (due to (1.11))
=a'y (nso*v), Ng
[St.tiv.tly speaking v must check the estimability of 2 X'X% be.ore

7.7

applying the Gauss-Markoff theorem, but as a'y is a linear function i
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guch that its erzpectel value L .'J'7z by defi-(tion of estim-

aht{ty, it 15 estimable.)

We thuz see thst the coefficient vectors of all BLUE's sre
In ar conbinations of columng of 1 and conversely. 1he vector
space spanned b, the columns of X {3 therefore called the "Estiza-

tign Space”. Since the rank of % {s r, it {s obvious that, there

' can at most beor linearly independent estimab'e functions and BLUES.

8. EPROP SPACE

setinition: A 1inear function of the observations s saic to
- belong to the crror space {f and only {f {ts expected val;c\
identically equal to zero, irrespective of the value of £, in the
model 1.1).

Thus 17 by belongs to the error - &y
E(L'y) = b'2L 0 0,
and hence
b'X - 0, or X'b =0, (2.1)

that {5 L {6 orthogonal to the columns of %. Conversely {f (8.1)
holds,
F(b'y) = i = 0,

. and b'y belongs to thr error space. We have therefore,

Thecrem £, A linear function of observati{ons belongs to the

errce space 1f and only if {ts coefficilent vector is orthogonal to

the coluans o. ¥, ¥

1f ’iél)i,g'(;’i,...,g"‘_\'_ belong to the error space,
X'bey = 00 (= 1,2,0.0.0) - (8.2)
. and hence
0l = - N
X °1§(1) AR ckg(k)) 0, (8.3

50 that the lincar combfnation
I "
Sy * e e (b ) (8.4)

- 2lso belongs to the error space. lence the name "space”.

Theorem 9. The -oefficient vecter of amy BLUE (when expressed

~ in terns of th: observations) is orthogonal to the toefficient vector

~of any lincar function of the observations belonging to the error

* space.

S,

T et Ll A

R . o 0 et

D e

o

Section 8. Error Space

TLe proof of this theor:iz

belcngs to the errcr space,

by theore=z 7, the coefficicr® wvector -
bination of the columas of Z.
Thus any vectcr in the .zzimaticn spacz is orthogonal i< any

vector in t'e error space and 3o we say that the 2rror space 1s

ortho,-w.:xal to the estimation space. Since cthe =stimaticn space
generated by columans of ¥ naw rank r. and since ve can find at
most n-r (every columns of X {3 an n-component vector) limearly
independent vectors orthogonal to columns of ¥, the rank of the
error spacc is n-r.

As an example of a linesr function belonging to the errc:
space, consider the differenc.

o'y - 18 (5.5)

This difference

of any unbiased estimate of -'2 and its ZL!
vas considered in (5.3) while proving the Causs-Markoff theore=n.
Since botn u'y and _X_’é have the same expected value, the difference
has expected value equal to zcro and {t belonps <o the errov space,
Another example of fuinctions belonging to the error space is
g - XE . (8.6)
This follows from, i
z(z-xé) - X8 - E(STK'y)
=Yg - ¥STH'N2
= 8 - ¥S7TSE
= X8 - BZ
= Xg - X2 (due to (3.7))
=0, (8.7)

4 Theorem 10, The coviriince betwien any

function
belonging to the error space and any BLUE {:z zero.

This is a consequence of theorem 9. If b'y belongs to the
s e o - = %
error space and >'? s the 3.7F of an estimable function }'3,

Cov(b'y,2"8) = Cavlb'y,:'s™E'y)
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What role does a function belonging to thf_sszgz_gganefplay7
I b'y btelongs to the error space and 1if b is normalized to have
b'o = 1, we have

E(b'y) = 0
and therefore,
crvn v w2 2
E(B'Y)T = V(b'y) = b'bo” =0t (8.9)
cisi03 2 §
Thus (b'y)" provides an uthg§§g"psgima;q:“nggz. Since the rank

of the error snace 1is n-r, as already observed, we can find at most

- i, 0 ;
PERS SULITSS SETRL-DEES 4 (8.10)
belonging to the error space, such that
'..X = 0; b! . ]
E{i) 0; —(1)2(1) 1; E(i)ﬁ(j)
i, = 1,2,...,n-4,

=0, (L1 # 3) (8.11)

Let Bl be the (n-r)»n matrix defined by \
b T
=( !

B, = L& ! (8.12)

v i
(n-r); .
Then, due to {8.11) )
. ve T x
ByX =0, and B BJ - (8.13)
or that B is a suni—otthogonal matrix. Observe that
(i(l)."_) * ywe B (b(n L - 12" By y
= y'B{Byy , (8.14)
and this is the sum of squares (S.S.) of a complete set of n-r
vnit, mutually orthogonal (that is, satisfying (8.11)) linear ‘
g'nctions belonging to the error space. This is why we call it SSE
or Lrror S.S. By (8.9),
2 5
i 1B ) = -r) 8.1
iy B]'Bly_, {n-r)c”. ( 5)
“hus by pooling ‘ogether all the linearly independent functions
belonging to the error space, we can obtain the estimate
2ss;:/fn-r) = x'B{B,y/(n-r) . (8.16)
of ¢“. 1In practice, however this task is made much simpler and it
is 1ot necessary to find the individual gzi)x_nnd square them and

add because SSE can also be expressed as

5 SR TN R e R

1

SRR N T
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SSE = (y-Xg)'(y-X8) , (8.17)
where 8 1s any solution of the normal equations (1.11). To prove

the cquivalence of (8.16) and (8.17), we complete the semi-ortho-
gonal matrix Bl by adjoining r more unit, mutually orthogonal rows

and forming the n x n orthogonal matrix,

Bl | n-r
B= || . (8.18)
2 |

Due to the orthogonality of B, rows of b, are orthogonal to those

of B1 and so
' =

BB =0 . . ) (8.19)

From (8.13), le = 0 or rows of El

Also rows of B2 are or:ﬁogonal to rows of Bl' But there can't be

are orthogonal to columns of X.

more than n-r linearly independent vectors orthogonal to the r rows

of Bl and so rows of B, mu.: be linear combinations of columns of
X or that
B, = cx', (8.20)

for some (n-r) x n matrix C. Therefore,
BZXB =- CcX' XB N )
= CX'y (as 3 satisfies (1.11))
= B-v (due to (8.20)). (3.21)
Also, as B is orchogonal

I=3'B = [B] [5 ] = B!B} + B'B_ . (8.22)

Finally, therefore, using (8. 22},
(X-xs) (x-xs) = (rxs“(n's + BZB,;\v—x £)
= (X-m)'sl l(y_—
ZB (y-X8)
= (Byy ~ B)X8)'(B,y-B, %2)
+ (Byy - BZXE_) (B,y - !32.‘(_B_>
= (Bly_)'(le) = {1'8]'_8‘1 5 (8.23)
as le = 0 (see 8,13) and B?X - HZKE (see 8.21).
SSE 1s thus the minimum value of
(y-XB) ' (y=X£) (5.24)
with respect to é, and as seen 16 (1.15), occurs for any é»sat{sfying

The error S.5, or



Chapter 2 The General Linear Model

ii). Another convenient form of SSE is
SsE = (¥ - XE)"(y - XB)
= X'y - 28'X'y + B'X"XB
= ¥ _ ,.,... . -

b
e

¥ s due to (1.11)

a

- - -

- e =
ArJnH + mmgm + ve. + mvavv .

(8.25)
wm can he de-cribed as the S.S. of all the observations minus the
of products of the left hand sides Qys-++»q

G of normal equations

1 mm.....mHv of the
ma» corresponds to 8, because the i-th

ied by the correspending solutions 8

eguations (1.11).

was deriv. S by differentiating with respect to mw_. (n-r)
~ iled the degrees of freedom (d.f.) of SSE and the estimate
: : 2 22 43 ‘
#uuum of 7 is denoted by =°. o° is also called the Error Mean

re, a-"reviated as EMS,

) rt

Fal
-t
0

, T ee. + B
19, vnm (8.26)
vrring in (8.25) 1= called the Regression S.S., abbreviate
or sometime as mmmﬂwu....‘mnv or SSR(8), the B in paranthesi

ifying the unknown parameters in the model under consideration.

find its expected value, we use (8.25) and obtain

a N -
E(SSR) = E I Yy - E(SSE)
1 - 1
n
= rmc“.m\ + mmnwwvHNu - Anlﬂvem
1 - -
= unw + MAMJmeMyImS|N~QN
= rof v Exxe . (8.27)

have therefore the following table, xnown as the analysis of

Table 2.1
5 e d.f 5.S mﬁx.mum.m.v
ourc - d.f. _ B 4 .5, a.f.
Regression m r B'q QM + W B'X'X8
i 4 2
“rror | n-r y'v - B'q' |¢”
Totai .oon | v'7

T, - IV NI AT T T TN T —

k |
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The degrees of ireedom of SSR ave r because = %'y
B X

has only T

linearly {ndependent elements ' This will be

it, as rank X = r.

made clearer later again in the next chapter.

Note that
E(Regression M.S.)} or wﬁmwwv > E(EMS)
and the equality sign occurs oun. (F
B'X'XE = O ,
or, which is the same as
X8 = 0. (8.28)
In that nmwm both RMS Awnmnmmmmo: K.WLV and EMS v-timate the same

quantity o .

2. SPECTRAL DECOMPOSITION OF TilE MSTRIX S

Let mwomn.....mn be the non-zero eigenvalues of the matrix S
and let F-30- SRR N be a ccrplete set of unit and mutually ortho-
gonal eigenvectors of S, with g. correspending o £, d = 1. )
and .m.n.T.__.-.cc..mﬂ to the zero eigsnvalues, Then S can He expressed
as

S = Lyg)By" * fampRy' ¢ .+ fgm, (9.1)
and since the g's are unit and crthogonal,
= ' LA v ( 2)
L= Bl * e tEES T F gl (9.2)
(9.1) is the spectral mmnoucomwnwosfom the mactrix S. Define
MI = nm.l LA ~ ....pl. ' AO .wv
$y DpllF e "F B - s
It can be verified that S defi od by (9.3) satisfles
Sss =5 (-4
and S~ i< thus a g-lnverse of S. Hence
H=S§Ss-= MﬁmW + ... +tgg'
' - - '
= Hv mﬂ+ﬁmﬂ+w PN mwm. 5 (9.5)

due to (9.2). Consider necw the parameter functionsc, MHW.....m 8.
They are estimable, because, from (9.5)
EH = g, as 818, = O (G=r#l, ...,p),(1=1,...,1), (9.0)

and the condition of estimability is satisfied. The BLUE of mmm is
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£i8 T BS54

-
AT WALt
r

1 % y
. Tl g9 - (4 =1,...,0. 9.7)
= Its Variance is, on .ccount of (6.4),

]

P v 2
Vi) - gisTge”

2 v
a .

v 9.8
Iy (9.8)

= -

,.:m—ﬂm (9.3). Similarly, the covariance are given Ly
_m va - e 2
Cov(g:£,8,8) = 8,5 B840

= O » wﬁ * 4._‘ Hvu = H-.Nu-.-Hv AO.@U
~ again due to (9.3) and the orthogonality of the g's.

; However, if we consider the parameter mcvnnuonm.mwm with
i=r1r+1, r+2,...,p where the g's ~orrespond to the zero eigen-
.Hdmwcwm of s, we find from (9.5)

mwm =0, (i=r1x+l,...,p) 9.10)
| 2nd the condition of estiuability is not satisfied. glB with
i=r+l,...,p are thus non-estimable.

If we write

Gl = [8y28pse-v>8,] ) (9.11)
and ! 2 :
1 = :
Gy = [BpyyoerrBp)s (9.12)
- we find that <J& is estimable, its BLUE is, from (9.7) ;
Hiagl s o ve ; 56 g (9.13)
£ f 1
1 ® 2 1 1
and its veriance-covariance matrix is o nwmmA.MI..... MWV.
1 r
The parametric functions g!f (i = 1,...,r) provide a convenient,

. simply c.nonical re:resentation of estimable functions and are
- useful in manv theoretical investigations. One interesting point
. to be moted is that the coefficient vector of the function giB8 and

its BLUE Mwm\mm are the same, except for a scalar multiplier H\mw.
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10. PROJECTION ON THL ESTIMATION SPACE

There 18 another way of 1. ¥!ng at the BLUE an estimable

; function 2'8. On account of cstimabflity, there is at least one

=

unbfased estimate a'y of 2'%. The vector a', then can be split as

jwe

a' =a'P+a'(1-r) , (10.1)
where ,
; P = XSX' (10.2)
is nxn, symmetric (sec 3.10), and fdempotent of raul cqual to
rank P = :rP = tr & X'X = trH = r. (10.3)

The two compunents a'P and a'(I-P) are orthogonal, becausie
. (a'P)(I-P)'a = a'(P-PD)a = 0 , (10.4)

2

as P =P, and P' = P. The unbiased . ctimate a'y, therefore, can be

expressed as
a'y = a'Py + a'(I-P)v , (10.5)
where the fivst term on the right side of (10.3) is

a'vy = a'xs"x'y
= w.xmnx.xw (due to 1.11))
- a'xug
= Wuxm (due to 3.7))
J nuy..m , (10.6)

as E(a'y) = A'B implies a'X = 1'. Thus a'Py is cthe BLUE of A'2

; and therefore, the other component a'(I-P)y is a linear function

b3

w belongs to tiie error, its expected value is zero and provides no
“ information on B and simply inflates the varilance of a'y. If we
g
B

~

-._belonging fo the error space, due to the orthogorality of a'P and

ffMMMMHWWMI!NHQJmV therefore shows that, given an unbiased estimate
~f a parametric function A'8, one can obtaiu the BLUE by using the
matrix operator P. The rvMHNnoﬂ P Wﬁwﬁnm a'y as a'Py and a'(I-P)y

and throws out a'(I-P)y, wwmuawrm the BLUE a'Py. Since a(I-P)y

-

remove this portion from a'y, we get the BLUE. The following

diagram illustrates the same peint.
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P-operator

) ) ~ | m.MWw‘m.v< lé- —> BLUE = a'Py
.‘.I/.V i - v _
+ a'(I-My
= —

a'(1I-P)y thrown out.

1w the geometrical termir-~logy, a'P is the projection of the vector

¥ +he vector space of the columns ~f X. This can be readily

a on
sevn TrTOom

s e W
m.mﬂ,m.wnb

- i'X', with L' = a'X5™ . (10.7)
o, fre= f1.8) z is a limear combination of the columns of X.- The
Wwwrw ,uUﬂalwnﬂIW.ﬁwlmu is orthogonal to the columns of X as
a'{I-P)X = a'X - a'Xs X'X
- =a'X-a"H’
(10.8)

= 0, as X = SH.

2'p is the projection of mu on the estimation space and P may

e czlled the projection operator.
2 ]
It may be interesting to see what happens, if a'Py is again

through' the P—operator Box in the diagram.

2
Va'(1-P)Py = a'(P-P)y =0 -

'Py {s thrown out and a'Py comes out
This is not sur-

we thus find thart, po part of a
newing that it is the BLUE in fact.
e estimation space and so 1ts vHOumnnswn on

as it is,
prisip; as a'P is 1in th

the esrimation vanm is itself,

B T ook

T el

Ut LT

-~
i

Section 12, Redured Normal Equations

11. ADDITIONAL EQUATIONS .0 SOLVE THE NORMAL EQUATIUNS
A solution of 8 of the normal equations
X'y = (X008

is obtained by taking p-r additional equations. (11.1) appear as p

(21.1)

equation- in p unknowns but are really only r cquations as rank
(X'X) = r. Suppose, for example,
k'g = d .

is one such additional equation employed.

(11.2)
Then k must not be a
linear combination of the rows of X"X. Because, if k {s, elther
we can obtain AkuNv from (L..1) by suitably combining the p equa-
tions in (11.1) or we 111 gel an inconsistency with W_W having two
different values. In either case (11.2) will not do so as an addi-
tional equation. Hence for an equatién of the form (11.2) to be an
additional m&cmnnon k must not be a linear combination of rows of
X'X and hen:e by the corollary of theorem 2 of Chapter 2, k'S must
be a non—-estimable function. Tho:s all the p-r additional equations
we may take to scolve (11.1) must be »:<0w<mnm non-cstimable para-
metric functions.

In practice, it is not nccessary to check first whether M.M is
estimable or not, before taking (11.2) as an additional equation,
because if we take (11.2) and if k'S is estimable, we won't be =ble
to solve (11.1) and will have to throw out (11.2) any way. The
additional equations are usually chosen by inspection, common sense
and their suitability is automati-ally determined, if we are able to
get 3 solution of mw . )

Usually, in practice the rank of X or X'X is determined from
the relation

rank X = p, the number of equatiocns in {(11.1)
- (p-r), the number of linearly indcpendent

additional equations used. (11.3)

12. REDUCED NORMAL EQUATIONS

Let us partition the vectors £, q and the matrix § as
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- ] E ﬁwa
£ == ’ q = mﬂl_ s (12.1)
£ 1 |
1?1 L ;
S S
F b
i a3 a 5 i (12.2)
ba Svb
where £

£, is mx1, m& is (p-m)x1, 9, is mxl, 9 is (p-m)x1l and mmm.

mnw. mvv are resprctively mxm, mx(p-m) and (p-m)x(p-m). Also
L mwmu From the normal equations
o= (XN, (12:3)
it follows that
Vig) = V(X'y) .
= X'V(¥)X ‘
= X'Xo2, (12.4)
Th . 1s an important propertv of the normal equations, which we can

statc as:

The variance-covariance mactrix of the left hand sides of the

2

normal equations is o times the matrix on the right hand sides of

coefficients of the parameters B.
This property is'retained even if we "reduce'" the number of
equstions (12.3) hy ﬁwaﬂhnmw»sm some of the B's, To see Lhis, we

write (12.3) using AHN.Hv.mam (12.2) as

g, = m.wmm.w + mm‘ B, (12.5).
8, = 5.8, * Syl o L)
From (12.6)
Sunky =8y = by (127
and if S b is nonsingular,
=2 i .
Byp = 9yp  (dp ~ Spalst- (12.8)

Substituting this in (12.5), we obtain

| A

e

e

3
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. " -1 a 12.9
9y = 3,503 = Saa-Fabpb ta’ls * B9

These are called ''reduced" equations, as mv is eliminated from

(12.3) and we have only mmcmnwosm in a subset £ of 7, This reduc-

-

tion must be achieved without using any "auditional equations” as
-1

described in Section 11, or which is the same as saying that mg

must exist. wvv will not do, because mWw needs additional equa-
tions to get 5. from (12. ).

Covariance matrix of the lcfrhand sides of these "reduced” normal

~ow we can show that the Variance-

equations is, (using 12.4) .
~1
Vg, = SupSppdy’
-1
- <Amav - no<AMd.wovmwvmwm
¥

-1
Sab b C0Vi8ya,)
-1 -1

3
* 5 BT S 55
2 -1, .2
* 5% < fatuntea
-1, 2 oF, e, 3
B o PR R T

= qwnmmmlmmcmvmmvmv

= am times the matrix on the right hand sides of the
reduced normal equations. (12.10)

The property is thus retained if a subset of pa-ineters {s eliminated

without using any additional conditions. The reader can check that

{(12,10) does not necessarily uoid if mw is used.

b
13. ILLUSTRATIVE EXAMPLES AND. ADDITIONAL RELULTS

Example 1.
If y = X8 + g, 1s the usual general linear model, with rank
X =1 < pand if A are r-!inearly independent estimable parametric
furction~, show that the model can be expressed as
y=28+¢, (13.1)
where AB = 6, Z is nxr . . is of rank r, so that y = 23 + £ is a

full rank model. Show further than the BLUE of 2 obtained from the

latter full rank model is the same as AR, the BLUE chtained from the

original non-full rank model.
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snother method of proving this result will be to compute the
matrix k. The :a«any mnc-n»o:m are ovnw—smu v% minimizing
_-m " - -8 -, = 13.1%)
(y,~ E V + (y,-€,-¢ @ + (yqygy ¢ -8 v {
Thev zre
v 4 v ; - e
g * % By ™ Ay Hillly ik
‘ 7. = 28, +
LI £ 1 28
o™ o # By s (13.16)
Yy * By % By
The Y'Y or S matrix is
302 1]
2 2 0
10 wh . (13.17)
. 3
e e - o = = : tions.
Letting g, = - Yo 9 =V + Yqr G4 Yor We solve the cquations

mnw«mnrmwmmnmnumnuos»mumncnmmsn.cu amnmwnnam»n»ormpmacmnpon.
2, = 0, Using this we get

) , , u
= 4yi2 By = 0, By 4y =7 G

g = Halty Eg
The metrix (X'%)" is, therefore (from the coefficients of q's)

(13.18)

i _c Ve (13.19)
%o o 0 ¥
1-3/2 0 .
H
Hernce
(13.20)

11 ag
He C...MV ax.#v - " 0 O_
0 -1

The necessary and sufficient condition for estimability of X'l 1s

then +' = +'H, which for the above H becones

| A = (13.21)
Leyohy=tgarg) = [Apadgadqle .
This will be so, if and only if
ST Tl
or
e e b B (13.22)

YA

VTN

e

e v

Section 13. Tilusirative aples and 2ddit! w2l Reeuils &9
Egamplz J.

The perfod of oscillatiem ¢t ©¢f 3 pendulum le h.<mnm , whetre 1
{s the length and g is th. gravitional conetan®. The geriods
ahserved are n»u (§ = ﬂ.m.....nwv and lenzths n {L « 1,....k) of
the pendulun, in an experiment. Assuming the errors of observa-

7

tions to be uncorrelated with zero seans and variance 57, o5 o

the best unblased astimate of 2%/ ¢ and an estimats of its variance.

Tk~ model Is
n»u = wxh + T (b= dyevai d=1,0000m 0 {13.23)
where
g=2v/fg, NLNENS £13.24)
Minimizing
_— a. AE
m ﬂﬂwh u..ﬁﬁv (13.25)
with respect to m. the normal equation is
N 2
Efe, x =3L12 (13.26)
gy (g b
er
"
Ix,
i t
Byl (13.27)
where
T, =%t
1. 3 )
3 U
Since a unique solution exlsrs for (13.26), it fa & full rank model
and
2 2 2
V(Y = o™ /L L x
£jt
=¥z n i
B iy (13.28)
This last result follows from sectlon &, observing that the matrix
-1 :
§ 7 reduces in this case to the reciprocal of T 7 xw. coeffic
of & in (13.26). o
5
To ectimite o7, we find, from (2.8.25)
o "
SSE = m Pt =87 Lt
{ Lty
FEL RS B
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= I L nN - mw L xm
Hu u.u “—.u i
2 oy
=L Lty, =B"In,e (13.29)
{3 1 1 11

and hence
22 , 2
' (13.37)

-
L=

(o

—a
-

where

(13.31)

j=]

li
-
2

~

as the d.f. of SSE are n-1,
..MNNSme 4.

For the model

¥ = mo + meH + ey (1 =1,2,3)
3 t:owc.x_ = -1, %, = o, X,y = 1, find the BLUES of mc.@w. If this
model is not correct and the true model s
2
Yy = Bg * Byxy + Byxy 4 o€y

find the bias in the BLULS obtained. Generalize this result for a
full rank model. Examine the effect of a different scaling on the
values of the x's.

The medel can be written as

[

[ ¥ f1 -1 8 €
N 0 .
= y,! = 1 ] + | e, (13.32)
_p* ! m_ L 5 2
1 Y3 2 A - Pmu
or y = X8 + ¢
The normal equations are, therefore,
X'y = x4xm 5 (13.33)
which reduce to ,
Ty s o] [8,
i ¥ e _ 0 (13.34)

. = | B ~ »
Y371 |

f vhere y = iy./3. The matrix X'X being diagonal can be easily
& ‘1

ua inverted, yielding

o I ENCURRI R T TR (PN N IR DA ORI | ATy e ST TS e R AR A
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-~

mO = ;V|~.< mH - Avw = %MV\M- (13.35)

However, 1if the given model is not correct, and

E(y,) = 8y + Byx, + 8,x0, (1 =1,2,3)

that is, (putting X = -1, x, = o, Xy = +1)

E(y)) = mm - B, + B,

mﬁan 8o

wawuv =By * 8, *+8,,
we obtain
- _ 1 V
E(By) = E(y) = 3E(y; + vy ¥ yy)

+ 28

=Byt 38

(13.36)

and
E(B)) = ECyy = yp)/2

- § (13.37)

1’
This shows that the bilas in mo Hm Am\uvmw but mH is unbiased.
To generalize this result, we observe that for the model (Full
rank) ‘ )
y=X+¢e,
the BLUE of 8 is
m = 0 xy .

However if the true model rmm additional terms and is

y=Xe+2Zy v+ e, (13.38)
the expected value of the BLUE »m@
E(B) = (X'0 X'E(y) : .
= Ax_xvlwx_ﬁxm + 2y)
=8+ "0 Txny . (13.39)
The bias in W is thus
@0ty . WW‘ (13.40)

The effect of rescaling the vzlues of x.'s is to muitiply each

i

column of X by a constant, If these constants are rw.....r: for the
.. 1
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celumns and € 1€ s ere,sC for the columns of 2, the new X and Z

s
matrices are

X and 27, (13.41)
where .

K = mwmwﬁrw.....rnv. C= m»mmAnH.....omv. (13;42)
Hence the bias in 8 given by (13.40) is altered to

®x"xK) ~L(rx'zo)y . (13.43)

- 5

These results are useful in response surface methodology, where an
exrerimenter may assume a response surface of degree 2 and the
actual surface may be of degree 3. For more details see Myers [49].

Example 5.

For a2 full rank model, Yy = Y8 + ¢, show that

. 2 -1
V(E ) > o (x"x '
RIERCAE SR |
wiert x o is the p-th column of X. Show further that the equality’

wowmmr:wm Mﬂ »m qnnromoan non:mon:mmnoucaumomx.

From Section 4,

v(g) = 0L, (13.44)

and so, if (X'X) and Ax.xvlw are partitioned as
I -
Sp-1 4 £ : ﬁwvnH 2 ] p1
— and i
s’ " a’ ‘ a 1 (13.45)
2 e 2l
!
we have
" 2
V(E =g
Ep) “pp
e i
=0 _mwlh_._\_m_
2 -1
= ¢ |S S -s'S . 4
o | v|H_\A_ vtu_ﬁmvu 'S, s)} (13.46)
The last relation follows from (1.3.11), Therefore,
" 2
: [
V(B ) = . (13.47)
P s 1e-1
-s'S s
pPp = "p-1-
3ut
x'nx =
% T Ppp (13.48)

s
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and m.wmwm is a non-negative quadratic form, hence
e (13.49)
>s =-158'S ] ¥
pp = %pp T = p-1¥
from which 1t {s obvious trat
8 ‘ A 3.50)
v > 0 -un AH\-
amvv > o (x'x ) -
P

and the equality holds only if 'S = 0, which again {s true,

s
only if s = 0. But the elements of s, from (13.45) are

x!x (1=1,..,,p-1)

=p
as

A TN N A PR B (13.51)
Therefore, the equality sign in (13.50) holds only when

' . =

X 0, i#p
or that Mﬂ 1s orthogonal to the other column of X.
Example 6.

Four owwmnnm.>. B, C, D are| involved in a welghing experiment,
Put together they weighed ¥y mnmrm. When A and C are put in the left
pan of the balance and B and D are put in the right pan, a weight of
Y, unnam was necessary in the right pan to balance. With A and I In
the left pan and C, D in the right pan, y, grams were needed in the
right pan and firally with A, D in the left pan and 5, C In the right
pan, y, srams were needed in the right pan to balance. If the

observations %w. Yoo <u. ¥, are all subject to unccorrelated errors

4
with a common variance om. obtain the BLUE of the total of all the
four objects and its variance.
The model can be written as

ww =A+B+C+D+c¢

I
Yp=A+C-B-D+c,
Y =A+B-C-D+ €,
Y, =A+D-B-C+ €4

where A, B, C, D denote the true weights of the objects. Minimizing
the sum of squares of the residuals, the normal cquations are
1= (X'08 (13.52)

where
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=Xy, 8" = [A, B, C, D],
o X, the motrix of coefficients of A, ', C, D in the model {is

11 v 1] (13.53)

- |
1 -1 1 -1
1 21 -1 ;

~1 =1 1} .

—

Therefore,

X'X = diag(4, 4, &4, &) = 4T

ety AW¢H.
So the model is of the full rank and

B eyl _ 1
E=EE g=%9

and therefore the BLUE of *he total weight is
A4BHCHD =M1, 1,1, 1] =5q +q, + a4 +9,)

=¥y » _ (13.54)

. . 2
whose variance is obviously o,

Example 7.
Consider the model,

Yy, =u 4 + mw + €

v, =u+a, +8, +¢

3 (13.55)

Mm = U+ Ww + mw‘+ mm.

.n_«.ﬁ,.m ,. +y +..:. +» . 5 ?
Avwswm R gH 19 %5y upw + »nmw + »mmu estimable?
by Is =, + “y estimable?

(c) Is 8
(d) Is v + e estimable?

«mvamr+ th +.Nam + mow + umw + wmw retimable?

(f) 1s a; - mnw + ag estinable?

(g) What is the covariance bctween the BLUES of mH -8

estimable?

2 and

e,-1,, 1f they are estimable?
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(h) Obtain any linear function of observatiouns belonging to
the error space.
{1) What Is the rank of the estimation space?
Since all these questions are about estimability and BLUES and their
variances, it may be a go ! Idea to get the matrix H right away.

For that, by minimizing the S.S. of residuals, with respect to .t

(1 =1,2,3), mu (3 =1,2), <e obtain the normal equations as
S 24
- 6y + 2L «, + 3IB

! R

13.56
| ( )

A -

Q) = 2u+ 20 +C

1 7§

nu n.mm + Nmm + MMQ,

a, = By Nmu & MMQ“

nm = wm + Hmn + wmw. V

4g ™ W+ Ta + 36,
Here AH = M%H. a = %H + Yo au = %u + %b' nb = %m + %m. nm = <H +
Y3 ¥ Ys 9 =¥y t ¥, F Y- (13.57)
To solve these equations, we find from the last two equations, -

B, = 3(ag - 3u - Ia)) (13.58)

Sy = 3ag - su - T, (13.59)

Substiture these in the remaining equations and we get

) > 1 - -
4, = 2u + NQH + w.mﬂw + Am - by - NMQ.MV. or

1 _ 2"
9y - MAnm + nmv = NQH - umﬁw. (13.60)
and similarly
: - WA +q,) = mm _ 20 (13.61)
93 73495 ¥ 94 2~ 3% :
and : b
q, - Ha. +q) = 2, - 2a (13.62)
& 3%s T g 37 3%t )

If we think that (13.60), (13.61), (13.62) are three mncmnwosm in three

unknowns ay (1 =1,2,3), we are wrong, because if we find a, from

1
(13.60) and put it back in the other two, we get only one equation.
So we need an additional : uation. Since mu~ occurs in (13.60) -
(13.62), we shall take moH = 0, ylelding



2 Chapter Z The General Linear Modal

Sectfon 13, [llustrative Zmamples and Additicnal Tesults #
;T F, -l 4y Collecting coefficients of @ . ©,.... .8
« 3 i _ & (3 = 1,2) given by (13633, (1
1y T % < NAAu + nmu (13.613) . (1 =1,2,3), muﬁu . -
By % 3%, - g5 eg). | ¢ 0 0o 0o o o
11 we substitute these 1 (13.58), (13.59) and the first equation “ o = 0 0 ;w. |w
of (13.5%: te cet u, E_,B,. we obtain - " 1 i i 13, 70)
. g o ® ST.mT = 0 0 3 0 - - e
9 v & ey - .H.
£, = 3g,~3u) 58 0 % -t -3
- H " & -
£ = y - y 1 1
£, uu.Anﬂ 3u) (13.64) -2 9o 0 0 &£ 0o
- [ 3
. = by + .wnmu . - . I.W o 0 9 3] IMM
These “vpesr s 3 equations in 3 unknowns, but 1f we use the first . "
. - - ence
twe to find “.. £ in terms .1 u and substitute in the last, we get - 1 i 1 i 3
- < - I = =+ = 5 2
4, = 4. % ¢ _, which Is true but does not involve u. So we need one W w m ° -
more «quation. Let us take it as Mmu = 0, so that, we get 0 T 7Y 7F > .
boeqyl6 (13.65) q - 0 -a, fw. ,,w ) 13.71)
Putting this vack in the othcer equations, we get 0 1 2 +W o 0
. Qr q - q q 3003 73 ,
. .. | 5. w-0__ L : (13.66) Lok
173 6 T 6 - g 6 0 0 0 3 -2
S0, we have obtained & solution of these equations. We needed 2 Ac 0 o o 1 1
; 0 =3 5l .
additional equations, namely L =
h - ' -
fay = 0, IB =0, (13.67) So. 1f 17 = [Rgs As dgs Rqu ds Mgl
iherefore, the rank of the estimation space is $ A by .
: VPR = [l e & S awn ¥ b, e % B s RO b bY
= p - the :cavmu of additional equations m - L] Il i 3t 3 12 L A 3
=¢ -2
W fo 2 'L .., 1]
= b . ﬂﬁu-awv u» I.ul > l.www - amhww .- ,uv- .ul e au : - .VUa
Thiz answere pert (i) of the problem, w 3
P - 5
Cellect .ng coefiicients of auy (1=1,2,3), m“ (3 =1,2) in ! 1% - WA,; -0
13.56 the X' i 1 h i .
¢ 200 5. Eha 5 jWnn “ s Wg Therefore \' = \'H, only iFf i
& 2. 2 2 3 ; - i
| m L T S L A T b (13.72)
2 2 0 0 1 1 Q 1 2 b 4 3
(X'x) = | 2 0 2 0 1! ¢ This answers (1) of the problem. We find that thi= condicien is not
N 2 satisfied for (b), satistied for (c), nnr satisricd for (&),
i2 0 0 2 1 1,
31 1 1 3 0 m satisfied for (e) and ().
'3 1 1 1 0 3 ; 1 The BLUE of &) -2, 1=

s a



- wou

Chapter 2 The General Linear Model Section 13. TIllustrative Examples and Addit{onal Results 59
: o s - 9 1 (a) How many linearlv independent parametric functions are
mH ) uN ) . ' . estimable? Obtain a2 complete set of such functions.
nd the BLUE of %) =7y 1s ((13.72) is satisfied for this function)), (b) Show that & - 6, s estimable. Obtain its BLUE and fts
. . G2~ 9, variance.
B 2T 2 . ASatd (c) Show that mw + mN is not estimable.
e nc<mwwm:nc between these two BLUES is bv (6.9), : (d) Find four different unbiased mmnwabnmm of mH - mu.
S M th=0. (13.75) (e) Obtain an unbiased estimate of o°, X -
an | By Eu:»wwuwzm nwm S.S. cf residuals, namely Aww - @w - mm\ -
M M# cee + A%m - moyl mmw , nmm normal equations are
0] q, =28 4+ 6_ + 8

1 1 57
BLUES die thus uncorreiat«d

Subscitute these in the

“st four equations of (13,781, We pet

oy
(o

[

L}

- D
1

(Lr-

>
i

L o]

~
(2]
"
gl
o
p—
+
o
~
LS Lol
«L >
o~

. nN = wwy+ OM + mmw._
To find & Jinear function, belonging to ‘he error space, we use " - -
. . q, =20, +6,_+9_,
(6.0), namely y - XE belongs to the error space. Iu the present 3 3 6 7
example, the first element of Y = X8 is P Nmb + oo + @m.
< ¥y = - @y - mw < 4 q = Nom + @H + ow.
. - S SR Y S S| & A ,
HMAN aAAw+A@v~ nmAm NA__ Qg = Noo +0, 40,
1 1 - - -
"6l t g q, = 200 + 0. + 0.,
1 1 7 7 1 3
- Y gyt sty c gy, vy vy ag = 205 + 8, + 0, . (13.78)
1 1 1 1
IRES T T R S T /= P = P
1 ) 1
= (v - S - - . - = W& i - +
uA,H zwv oﬁzu Y4 + Y vov . (13.70) A + Yor Gy = ¥, + Ya» 93 = ¥, Yer
his fuaction holongs tof the error space, 9 =Y, + Yg» g ™ ¥y * Yor Qg = Y, + Yy
xamplc §., ' : .
o . 9 " ¥s ¥ Yqr 95 = vyt yg (13.79)
Consider the model,
. -rom the last four equations of (13.78), we obtain
g Sy TR Ry . o
. mw - A&U g @P - &NV\N-
A | . ) X,
‘ 8 = (4, - 8y - €,)/2,
Y3 =By 4 B + ey - - -
o = - -
77 = (4, & ouu\w.
v.b = T.u + wm, + mb - a ~ 1
= oot = / {11
o 2B om Anm mN mbv\w. (13
Y5 = By ¥ 8y * g
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'

S " . o 1 1
fn.wf,rfuwf. 1 0 0 0-5 0~ j
T - 1 o 1.3 _L.1_ 3]
A Rk IR assy | PRI S e S S
1 1 3 1 1 3
R 1 -7 1 0 -3 4% 7 % 3
Lp =9 =35 - 9y i , i
1 1 1 ; : 00 0 1 0-3 0-3
iy = Gy = 5 = F9gs
2 12 w.m uw,m i 3 1 3 1 9 1 3 3
—— = _ ) % 8 8 8 8
BT T e T T 1 1 3 5| 11
- 1 1 - 11 L3 51 1
L, =9, = 5% = 3 - (13.82) _ i 2 %7778 878 %
' - ) ¢ - © 1 1 1 1 1 5 _3
_ 1f we find mw from the first, ow from the seccnd and ou frem the -7 3 % T 58 T4L '} "3
‘third equation of (13.81) arid substitute in the last, we are unable ’
- : AL ogod 2 242 2 (13.86)
to solve for 3, and so we take an additional equation, say 3 L4 2 Z 8 8 8 8 -
m~+ mw e (13.83) Again, collecting the coefficients of mw.....mm in the normal
- Using this in (13.81), we get equations (13.79), the matrix (X'X) or S is
, ot L, 2 0 001 0 1 0]
" N 002 0 01 ¢ 01
8, = =8, =1, Jf.w:.H +1,.),
: 00 2 0 01 1 O
8, = L, < (13.84) 00020101
..mcvmﬁwHCnunm these in (13.80), we get . 11 0 0 2 0 00
n 0 01 00 2 00O
7 m.n. HWADU = .WIHAH = HLN lw—..bv' ‘
. . 1 1 1 ; 1 01 0 00 2 0
8 = 300 ¥ Ly 3Ly - 3y 0101000 2. (13.87)
. 1 1.1 1 '
mu Mpr - MFH = HN i3 Mﬁpv. Hence the matrix
T SN ST = (X" (X'
Bg mAnm L, =3 1 mrbu. (13.85) H = (X'X) (X'X) is
.,;GCHHmnWL:w nWm nommm»nwn:nm of Q;5 Gy9eeesg in (13.84), (13.85), the lw 21/2 17 0 0 0 0 m;
matri L X S is : :
matrix (X'X) or, s 0 1/2-1/2 0 0 0 0 O
i 0 -1/2 1/2 0 0 0 0 0©
0 -1/2-1/2 1 0 0 0 O
0 1/2 1/2 01 0 0 O
0 1/2 1/2 0 0 1 0 0
. 0 1/2 1/2 0 0 0o 1. (13.88)

We are now in a position to answer all the questions (a) te (3).
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Since we needed only one additional equation (13.83) to solve the

normal equations anc as there are elght unknowns, the rank of the

cstimation space is r = 7 or there are seven linearly independent

estimalle functions in a complete set,

A parametric function

A'6 =)
L R R R (13.89)

is cstimable, if and only if A" = A'H. Using (13.88) to evaluate

X'H, we find this condition reduces to

Ay o+ =
IRAPRETS Y yw+»m+»u+ym. (13.90)

8

xm:nm.mnwmmnusmvwmmcznnwos w ywm». can be written, meuw«mwu.wov.

as (by expressing ym in terms of the others),

¥

»,u.\/

a
<

+
3 wmv + ywmmw + mmv + yuﬁou.+omv + ybAmb + mmu

+ 2. (6.-68_) + A_(B - . -
5(85-8g 6860 + A;(8-65) . (13.91)

Therefore, a comnlete set of 7 linearly independent estimable

functions may be taken as

8, + : i -
g* %2 * % B3+ 85, 0, +6g, 1 -0,

Also, since (13.90) is not satisfied for au +oNv it is not estimable,

but it is satis{ied for mu |mN and it i1s estimable. Hence, its
BLUE is

A R L)
u%g|«~-w£ .
TR ) w.on AL TRRCERD
= qu - mew +.WQu - meb > m¢m - W«m - Weu +.mem.

" The va-iance of this BLUE is from (6.4)
2

¥
Jd

-1, 0...0]87{1,-1,0 ... 0]"

(1
_3 |
- 37 (13.93)
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The rank of the error space Is onlv one as

her=8-7=1. (13.94)

. To find a function belonging to the error space, we recall that

y - X8 belongs to the error space and we can take any element of-
this as the rank of the error space is one, Let us take thi. second

element. In the present example it is

y, - 6, - mu

Tl T wﬁep *Ll) - wAnm - weH =1y = Wepv

=Yy - WAM i m g = w 2 " mao

- meu +.wqu o W@w B Wep i qu - W¢m - wwq M me

= WAI<H tT Yyt ¥y~ Yy + Y =Yg T Yy + %mv. (13.95)

The error S.S. in this case consists of the square of only one
linear function belonging to the error space, such that the coeffi=-
cient vector of the function is of unit length (see 8.11). From
(13.95), =onamwwn»=m the nommmwmwmaﬁ vector to have unit length, we
get the required function as "

H A
' = eme— - A - - 4 -
Wyl = 7= G¥y # 0y + ¥y~ oy ¥y = By, = vy ¥ gl (13.56)

Hence, an estimate of aw is

"2 _ Error S.S. : 2
9 3.1 by /1

1 2
T BV tg) e (13.97)

To obtain four different unbiased estimates of oH lmw. we recall
that the BLUE of an estimable function is obrained (see section L0)
from any unbiased estimate by "projecting" it on the estimation
space and removing the part that projects on the error space. Using
this logic in reverse, we rie: that, any unbiased estimate of an
estimable parametric function is its BLUE plus a linear combination

of functions belonglng to the error space. Hence any unbiased
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estimate of 6 - 8, 1s of the form
s

mu & mw +db

whe e mw - ¢, is given by (13.92), b! Yy by (13.96) and d is any
r

1y (13.98)

- =(1)

¥ constant. We can thus get any nupber of unbiased esti-

mates of & = mm by giving different values to d.
Zxercises

1. The deciles of a normal dist:.bution are

[
"

1 17.5056 a} = 20.6764 d, = 23.992

am = 18,718y au = 21.6681 mm = 25,5026

d, = 19.7684 nm = 22,7592 ac = 27.8952.

Estimate by the method of least squares, the mean and standard

deviation of the distribution.
2. Consider the model .
Yy = X8 +¢,

where M.e,zﬂmquHv. Show that the vector A8 is estimable, wm/mmm
only if one of the mowmazusm seven conditions holds.
(2) A = BX for some matrix B.
(b, AMWH = r(X), where 'r stands for rank, )
(¢) riX(I-A"a)} = r(X) - r(\), for some g-inverse A~
(d) AX'X = A, for some g-inverse X

e) >WM is invariant for every least squares g-inverse Nw. that
is a g-inverse satisfying kam = X and AMNMV. = xwm.
(f) r(ix<; is invariant for every least-squares g-inverse xm.

(g) mabxwv = r(A) for every least squares g-inverse X

.
[Alalouf & Styan (1)]

3. For a linear model, the normal equations arc ¢
0] [ 12
L= 16

, || %2 .
-8 -3 1! [8,] TNSA

10 =2 -L [

™ >w >

3
N
v

1
w

7

T

AU R a5

Exercises 65

(1) Obtaln any solution of the normal equations.
(i1) Find the maximum number of linearly independent estimable
parametric functions (linear),
(1i11) When 1s »Hmp ymmw + ywwu est imable?
(iv) 1If A'B is estimable, find its BLUE and the variance of
the BLUE.
(v) Find the eigenvalues and eigenvectors of X'X.
(vi) Find any :o:nmmn»amwwm parametric function.
(vii) oObtain any two different solutions of the normal equa-

-

tions and verify that the value of § is the = me for

-8
,— 2

these but that of 5, +8 is not. Why?

g ¥B 8

3
4. For the model

m@uv =a+rB, r=12,...,n

Viy)) = om. ooif.w% =0, 1i#],
estimate a and B by Bmﬂwﬂﬁuusm >w + »m. where
P
>v unMHAwH - a - rd)
A =3" {y_-a-r8).
q ﬂﬂDl@%w 5 s

Find the variances of t .ese estimates. For what values of p and a,

will these <mwwm=nmm be the smallest?

5. For the model

y

= ot mﬂﬁxﬂ -x) + ¢ r=1,2,...,n

T =

where mﬁ ~ ZHAQ.QNV. find the least squares estimates of a and 8.
Obtain an estimate of ow also.

6. For the model

£ ZA.@.QMHV v

y=X8+g, ¢
g(y) is some function of ¥, such that its expected value is
identically equal to zero. Show that the covariance between 5y
and any element of X'y is null.

Let L(y) be any function of y, such that its expected value is

A'B. Let A'8 be the BLUE of A'8. Defining
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vy

show that

VL) 2 V(a'B) .

[This shows that, whenm £'s are normally dist-ibuted, '8 1s not only
"best" amon:

5 linear untiased estimates of L'

but also among all
unbiased cstimates., ]

7. For the model,

y =X+, £~ N, QNHV.

S is any non-singular generali:ed inverse of X'X. Show that

is not e timabla,

8. Censider the full rank Iinear model

y =38 + ¢,

Then the estimated residuals ¢ are given by

Wlklxm. ! .

AH = va-
~ where P = xmm.xvlwx.. The rank of the matrix T - P is n-p. Show
‘unrmn the general solution of the equations

1m oy

= Aleum. '

£ terms of p arbitrary parameters is

rnuhlxmu

| where ¢ is an arbitrary p-vector. Good [20]

9. Consider an mym matrix, M partitioned as

T = rank x_u.n rank M,

67
Exerclises

Show that

]-H. -
My, o _

| 1!
Lo ' o

is a g-inverse of M,

10. Comsider a symmetric matrix § of order pxp and rank r < .
Let K be any (p-r)xp matrix of rank p-r such that the r ws of & are

linearly independent of the rows of 5. Show that
| =
P ;
is non singular and that if
4 -1
m_w.w HE c
| f
Lo SO Y

then num = 0 and nww is a gencralized (nverse of S,

-1
11. "With the same notation a: in exercise 10, show that (S+'K)
is a g-inves:e of §.
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