
CHAPTER 3

ELEMENTS OF
POINT SET TOPOLOGY

3.1 INTRODUCTION

A large part of the previous chapter dealt with "abstract" sets, that is, sets of
arbitrary objects. In this chapter we specialize our sets to be sets of real numbers,
sets of complex numbers, and more generally, sets in higher-dimensional spaces.

In this area of study it is convenient and helpful to use geometric terminology.
Thus, we speak about sets of points on the real line, sets of points in the plane, or
sets of points in some higher-dimensional space. Later in this book we will study
functions defined on point sets, and it is desirable to become acquainted with
certain fundamental types of point sets, such as open sets, closed sets, and compact
sets, before beginning the study of functions. The study of these sets is called
point set topology.

3.2 EUCLIDEAN SPACE Rn

A point in two-dimensional space is an ordered pair of real numbers (x1, x2).
Similarly, a point in three-dimensional space is an ordered triple of real numbers
(x1, x2i x3). It is just as easy to consider an ordered n-tuple of real numbers
(x1i x2, ... , xn) and to refer to this as a point in n-dimensional space.

Definition 3.1. Let n > 0 be an integer. An ordered set of n real numbers
(x1, x2i ... , xn) is called an n-dimensional point or a vector with n components.
Points or vectors will usually be denoted by single bold face letters; for example,

x = (x1, x2, ... , xn) or Y = (Y1, Y2, ... , Yn)

The number xk is called the kth coordinate of the point x or the kth component of
the vector x. The set of all n-dimensional points is called n-dimensional Euclidean
space or simply n-space, and is denoted by R.

The reader may wonder whether there is any advantage in discussing spaces of
dimension greater than three. Actually, the language of n-space makes many
complicated situations much easier to comprehend. The reader is probably familiar
enough with three-dimensional vector analysis to realize the advantage of writing
the equations of motion of a system having three degrees of freedom as a single
vector equation rather than as three scalar equations. There is a similar advantage
if the system has n degrees of freedom.
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48 Elements of Point Set Topology Def. 3.2

Another advantage in studying n-space for a general n is that we are able to
deal in one stroke with many properties common to 1-space, 2-space, 3-space,
etc., that is, properties independent of the dimensionality of the space.

Higher-dimensional spaces arise quite naturally in such fields as relativity, and
statistical and quantum mechanics. In fact, even infinite-dimensional spaces are
quite common in quantum mechanics.

Algebraic operations on n-dimensional points are defined as follows:

Definition 3.2. Let x = (x1, ... , x") and y = (yi, ... , y") be in R". We define:

a) Equality:

b) Sum :
x=yif,and only if,x1

X + y = (x1 + Y1, ... , xn + Yn)

c) Multiplication by real numbers (scalars):

ax = (axi, ... , ax") (a real).
d) Difference:

x-y=x+(-1)y.
e) Zero vector or origin:

0 = (01 ...10).
f) Inner product or dot product:

x'Y = xkYk

g) Norm or length:
k=1

IIXiI = (x.x)112 =
xk)1/2

k-1

The norm Ilx - YII is called the distance between x and y.

NOTE. In the terminology of linear algebra, R" is an example of a linear space.

Theorem 3.3. Let x and y denote points in R". Then we have:

a) ll x ll >- O, and II x 11 = 0 if, and only if, x = 0.

b) Ilaxll = Ial IIx11 for every real a.

c) llx - YII = IIY - xll

d) Ix'YI < Ilxll IIYII (Cauchy-Schwarz inequality).

e) Ilx + YII < Ilxll + IIYII (triangle inequality).

Proof. Statements (a), (b) and (c) are immediate from the definition, and the
Cauchy-Schwarz inequality was proved in Theorem 1.23. Statement (e) follows
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from (d) because

n n

llx + y112 = E (xk + Yk)2 = E (x 'k + 2Xk Yk + Y20
k=1 k=1
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= IIx112 + 2x-y + Ily112 <- IIXI12 + 211x11 Ilyll + 11Y112 = (11x11 + Ilyll)2

NOTE. Sometimes the triangle inequality is written in the form

llx - ZII <- llx - Y11 + Ily - Z11.

This follows from (e) by replacing x by x - y and y by y - z. We also have

111X11 - IIY11l s 11X - yll

Definition 3.4. The unit coordinate vector Uk in R" is the vector whose kth com-
ponent is I and whose remaining components are zero. Thus,

U1 = (1,0,...,0), U2 = (0, 1,0,...,0), ...,U" = (0,0,...,0, 1).

If x= (x1, ... , xn) then x = x1u1 + + x"u" and x1 = X'u1, x2 =
X u2, ... , x, = x - u". The vectors u1, ... , u,, are also called basis vectors.

3.3 OPEN BALLS AND OPEN SETS IN R"

Let a be a given point in R" and let r be a given positive number. The set of all
points x in R" such that

llx - all < r,

is called an open n-ball of radius r and center a. We denote this set by B(a) or
by B(a; r).

The ball B(a; r) consists of all points whose distance from a is less than r.
In R1 this is simply an open interval with center at a. In R2 it is a circular disk,
and in R3 it is a spherical solid with center at a and radius r.

3.5 Definition of an interior point. Let S be a subset of R", and assume that a e S.
Then a is called an interior point of S if there is an open n-ball with center at a, all of
whose points belong to S.

In other words, every interior point a of S can be surrounded by an n-ball
B(a)s S. The set of all interior points of S is called the interior of S and is
denoted by int S. Any set containing a ball with center a is sometimes called a
neighborhood of a.

3.6 Definition of an open set. A set S in R" is called open if all its points are interior
points.

NOTE. A set S_is open.if and only if S = int S. (See Exercise 3.9.)
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Examples. In R1 the simplest type of nonempty open set is an open interval. The union
of two or more open intervals is also open. A closed interval [a, b] is not an open set
because the endpoints a and b are not interior points of the interval.

Examples of open sets in the plane are: the interior of a disk; the Cartesian product of
two one-dimensional open intervals. The reader should be cautioned that an open interval
in R1 is no longer an open set when it is considered as a subset of the plane. In fact, no
subset of R1 (except the empty set) can be open in R2, because such a set cannot contain
a 2-ball.

In R" the empty set is open (Why?) as is the whole space R". Every open n-ball
is an open set in R". The cartesian product

(a1, b1) x ... x (a", b")

of n one-dimensional open intervals (a1, b1), ... , (a", b") is an open set in R" called
an n-dimensional open interval. We denote it by (a, b), where a = (a1, ... , a") and
b = (bl,..., b").

The next two theorems show how additional open sets in R" can be constructed
from given open sets.

Theorem 3.7. The union of any collection of open sets is an open set.

Proof. Let Fbe a collection of open sets and let S denote their union, S = UAEF A.
Assume x e S. Then x must belong to at least one of the sets in F, say x e A.
Since A is open, there exists an open n-ball B(x) c A. But A c S, so B(x) c S
and hence x is an interior point of S. Since every point of S is an interior point,
S is open.

Theorem 3.8. The intersection of a finite collection of open sets is open.

Proof. Let S = nk=1 Ak where each Ak is open. Assume x E S. (If S is empty,
there is nothing to prove.) Then x e Ak for every k = 1, 2, ... , m, and hence
there is an open n-ball B(x; rk) c Ak. Let r be the smallest of the positive numbers
r1, r2, ... , rm. Then x e B(x; r) c S. That is, x is an interior point, so S is
open.

Thus we see that from given open sets, new open sets can be formed by taking
arbitrary unions or finite intersections. Arbitrary intersections, on the other hand,
will not always lead to open sets. For example, the intersection of all open intervals
of the form (-1 In, 1 /n), where n = 1, 2, 3, . . . , is the set consisting of 0 alone.

3.4 THE STRUCTURE OF OPEN SETS IN R'

In R1 the union of a countable collection of disjoint open intervals is an open set
and, remarkably enough, every nonempty open set in R1 can be obtained in this
way. This section is devoted to a proof of this statement.

First we introduce the concept of a component interval.
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3.9 Definition of component interval. Let S be an open subset of R'. An open
interval I (which may be finite or infinite) is called a component interval of S if
I c S and if there is no open interval J # 1 such that I s J s S.

In other words, a component interval of S is not a proper subset of any other
open interval contained in S.

Theorem 3.10. Every point of a nonempty open set S belongs to one and only one
component interval of S.

Proof Assume x e S. Then x is contained in some open interval I with I S S.
There are many such intervals but the "largest" of these will be the desired com-
ponent interval. We leave it to the reader to verify that this largest interval is
I. = (a(x), b(x)), where

a(x) = inf {a: (a, x) 9 S}, b(x) = sup (b: (x, b) s S}.
Here a(x) might be - oo and b(x) might be + oo. Clearly, there is no open interval
J such that Ix c J T- S, so Ix is a component interval of S containing x. If Jx
is another component interval of S containing x, then the union Ix U Jx is an
open interval contained in S and containing both Ix and J. Hence, by the defi-
nition of component interval, it follows that Ix u Jx = Ix and Ix u Jx = Jx, so
Ix=Jx.
Theorem 3.11 (Representation theorem for open sets on the real line). Every non-
empty open set S in R1 is the union of a countable collection of disjoint component
intervals of S.

Proof. If x e S, let Ix denote the component interval of S containing x. The union
of all such intervals Ix is clearly S. If two of them, Ix and Iy, have a point in
common, then their union Ix u Iy is an open interval contained in S and containing
both Ix and Iy. Hence I. u Iy = Ix and I. u Iy = Iy so Ix = Iy. Therefore the
intervals Ix form a disjoint collection.

It remains to show that they form a countable collection. For this purpose,
let {x1, x2, x3i .. . } denote the countable set of rational numbers. In each com-
ponent interval Ix there will be infinitely many x,,, but among these there will be
exactly one with smallest index n. We then define a function F by means of the
equation F(II) = n, if x is the rational number in Ix with smallest index n. This
function F is one-to-one since F(Ix) = F(ly) = n implies that Ix and IY have x in
common and this implies Ix = Iy. Therefore F establishes a one-to-one corre-
spondence between the intervals Ix and a subset of the positive integers. This
completes the proof.

NOTE. This representation of S is unique. In fact, if S is a union of disjoint open
intervals, then these intervals must be the component intervals of S. This is an
immediate consequence of Theorem 3.10.

If S is an open interval, then the representation contains only one component
interval, namely S itself. Therefore an open interval in R1 cannot be expressed as
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the union of two nonempty disjoint open sets. This property is also described by
saying that an open interval is connected. The concept of connectedness for sets
in R" will be discussed further in Section 4.16.

3.5 CLOSED SETS

3.12 Definition of a closed set. A set S in R" is called closed if its complement
R" - S is open.

Examples. A closed interval [a, b] in R' is a closed set. The cartesian product

[a1, b1 ] x ... x [an, bn]

of n one-dimensional closed intervals is a closed set in R" called an n-dimensional closed
interval [a, b].

The next theorem, a consequence of Theorems 3.7 and 3.8, shows how to
construct further closed sets from given ones.

Theorem 3.13. The union of a finite collection of closed sets is closed, and the
intersection of an arbitrary collection of closed sets is closed.

A further relation between open and closed sets is described by the following
theorem.

Theorem 3.14. If A is open and B is closed, then A - B is open and B - A is
closed.

Proof. We simply note that A - B = A r (R" - B), the intersection of two
open sets, and that B - A = B r (R" - A), the intersection of two closed sets.

3.6 ADHERENT POINTS. ACCUMULATION POINTS

Closed sets can also be described in terms of adherent points and accumulation
points.

3.15 Definition of an adherent point. Let S be a subset of R", and x a point in R",
x not necessarily in S. Then x is said to be adherent to S if every n-ball B(x) contains
at least one point of S.

Examples

1. If x e S, then x adheres to S for the trivial reason that every n-ball B(x) contains x.

2. If S is a subset of R which is bounded above, then sup S is adherent to S.

Some points adhere to S because every ball B(x) contains points of S distinct
from x. These are called accumulation points.

3.16 Definition of an accumulation point. If S c R" and x e R", then x is called
an accumulation point of S if every n-ball B(x) contains at least one point of S
distinct from x.
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In other words, x is an accumulation point of S if, and only if, x adheres to
S - {x}. If x e S but x is not an accumulation point of S, then x is called an
isolated point of S.

Examples

1. The set of numbers of the form 1/n, n = 1, 2, 3, ... , has 0 as an accumulation point.
2. The set of rational numbers has every real number as an accumulation point.

3. Every point of the closed interval [a, b] is an accumulation point of the set of num-
bers in the open interval (a, b).

Theorem 3.17. If x is an accumulation point of S, then every n-ball B(x) contains
infinitely many points of S.

Proof. Assume the contrary; that is, suppose an n-ball B(x) exists which contains
only a finite number of points of S distinct from x, say a,, a2, ... , am. If r denotes
the smallest of the positive numbers

Ilx-a,11, Ilx-a211, ..., IIx - amll,

then B(x; r/2) will be an n-ball about x which contains no points of S distinct
from x. This is a contradiction.

This theorem implies, in particular, that a set cannot have an accumulation
point unless it contains infinitely many points to begin with. The converse, how-
ever, is not true in general. For example, the set of integers {1, 2, 3, . .. } is an
infinite set with no accumulation points. In a later section we will show that
infinite sets contained in some n-ball always have an accumulation point. This is
an important result known as the Bolzano-Weierstrass theorem.

3.7 CLOSED SETS AND ADHERENT POINTS

A closed set was defined to be the complement of an open set. The next theorem
describes closed sets in another way.

Theorem 3.18. A set S in R" is closed if, and only if, it contains all its adherent
points.

Proof. Assume S is closed and let x be adherent to S. We wish to prove that x e S.
We assume x 0 S and obtain a contradiction. If x 0 S then x e R" - S and, since
R" - S is open, some n-ball B(x) lies in R" - S. Thus B(x) contains no points of
S, contradicting the fact that x adheres to S.

To prove the converse, we assume S contains all its adherent points and show
that S is closed. Assume x e R" - S. Then x 0 S, so x does not adhere to S.
Hence some ball B(x) does not intersect S, so B(x) c R" - S. Therefore R" - S
is open, and hence S is closed.

3.19 Definition of closure. The set of all adherent points of a set S is called the
closure of S and is denoted by S.
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For any set we have S E- S since every point of S adheres to S. Theorem 3.18
shows that the opposite inclusion S c S holds if and only if S is closed. Therefore
we have:

Theorem 3.20. A set S is closed if and only if S = S.

3.21 Definition of derived set. The set of all accumulation points of a set S is
called the derived set of S and is denoted by S'.

Clearly, we have S = S u S' for any set S. Hence Theorem 3.20 implies that
S is closed if and only if S' S. In other words, we have:

Theorem 3.22. A set S in R" is closed if, and only if, it contains all its accumulation
points.

3.8 THE BOLZANO-WEIERSTRASS THEOREM

3.23 Definition of'a bounded set. A set Sin R" is said to be bounded if it lies entirely
within an n-ball B(a; r) for some r > 0 and some a in R".

Theorem 3.24 (Bolzano-Weierstrass). If a bounded set S in R" contains infinitely
many points, then there is at least one point in R" which is an accumulation point of S.

Proof To help fix the ideas we give the proof first for R1. Since S is bounded,
it lies in some interval [ -a, a]. At least one of the subintervals [ - a, 0] or [0, a]
contains an infinite subset of S. Call one such subinterval [a1, b1]. Bisect [a1, b1]
and obtain a subinterval [a2, b2] containing an infinite subset of S, and continue
this process. In this way a countable collection of intervals is obtained, the nth
interval [an, bn] being of length b" - an = a/2n-1. Clearly, the sup of the left
endpoints an and the inf of the right endpoints bn must be equal, say to x. [Why
are they equal?] The point x will be an accumulation point of S because, if r is
any positive number, the interval [a", b"] will be contained in B(x; r) as soon as n
is large enough so that bn - an < r/2. The interval B(x; r) contains a point of S
distinct from x and hence x is an accumulation point of S. This proves the theorem
for R1. (Observe that the accumulation point x may or may not belong to S.)

Next we give a proof for R", n > 1, by an extension of the ideas used in treating
R1. (The reader may find it helpful to visualize the proof in R2 by referring to
Fig. 3.1.)

Since S is bounded, S lies in some n-ball B(0; a), a > 0, and therefore within
the n-dimensional interval J1 defined by the inequalities

- a < xk 5 a (k = 1, 2, ... , n).

Here J1 denotes the cartesian product

J1 = 1(1) x IZ1) x ... X IM.

that is, the set of points (x1, . . . , xn), where xk e I,") and where each Ikl) is a
one-dimensional interval -a < xk < a. Each interval IV) can be bisected to
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Figure 3.1

form two subintervals Ikll and I"), defined by the inequalities

lill : -a < xk < 0; Ik2 : 0 < xk < a.

Next, we consider all possible cartesian products of the form

lik, X IZ 2 X X (a)

where each k; = 1 or 2. There are exactly 2" such products and, of course, each
such product is an n-dimensional interval. The union of these 2" intervals is the
original interval J1, which contains S; and hence at least one of the 2" intervals in
(a) must contain infinitely many points of S. One of these we denote by J2, which
can then be expressed as

JZ = Ii 2) x 122) X ... X j,((2),

where each Ik2) is one of the subintervals of Ik1) of length a. We now proceed
with J2 as we did with J1, bisecting each interval Ik2) and arriving at an n-dimen-
sional interval J3 containing an infinite subset of S. If we continue the process,
we obtain a countable collection of n-dimensional intervals J1, J2, J3, ... , where
the mth interval J," has the property that it contains an infinite subset of S and
can be expressed in the form

J. = I(-) X I2(M) x . X Iwhere Ikm) Ik1)

Writing

we have

1(m) = [a(m) b(m)7k k , k '

bim) - aim) = 2^a _2
(k = 1, 2, .

, n).

For each fixed k, the sup of all left endpoints aim), (m = 1, 2, ... ), must therefore
be equal to the-inf of all right endpoints b(m), (m = 1, 2,... ), and their common
value we denote by tk. We now assert that the point t = (t1, t2, ... , t") is an
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accumulation point of S. To see this, take any n-ball B(t; r). The point t, of
course, belongs to each of the intervals J1, J2, ... constructed above, and when
m is such that a/2' -2 < r/2, this neighborhood will include J
contains infinitely many points of S, so will B(t; r), which proves that t is indeed
an accumulation point of S.

3.9 THE CANTOR INTERSECTION THEOREM

As an application of the Bolzano-Weierstrass theorem we prove the Cantor
intersection theorem.

Theorem 3.25. Let {Q1, Q2, ... } be a countable collection of nonempty sets in R"
such that:

i) Qk+1 C Qk (k = 1, 2, 3, ... ).
ii) Each set Qk is closed and Q1 is bounded.

Then the intersection nk 1 Qk is closed and nonempty.

Proof. Let S = nk 1 Qk. Then S is closed because of Theorem 3.13. To show
that S is nonempty, we exhibit a point x in S. We can assume that each Qk con-
tains infinitely many points; otherwise the proof is trivial. Now form a collection
of distinct points A = {x1, x2, ... }, where Xk a Qk. Since A is an infinite set
contained in the bounded set Q1, it has an accumulation point, say x. We shall
show that x e S by verifying that x e Qk for each k. It will suffice to show that x
is an accumulation point of each Qk, since they are all closed sets. But every
neighborhood of x contains infinitely many points of A, and since all except
(possibly) a finite number of the points of A belong to Qk, this neighborhood also
contains infinitely many points of Qk. Therefore x is an accumulation point of
Qk and the theorem is proved.

3.10 THE LINDELOF COVERING THEOREM

In this section we introduce the concept of a covering of a set and prove the
Lindelof covering theorem. The usefulness of this concept will become apparent
in some of the later work.

3.26 Definition of a covering. A collection F of sets is said to be a covering of a
given set S if S c A. The collection F is also said to cover S. If F is a
collection of open sets, then F is called an open covering of S.

Examples

1. The collection of all intervals of the form 1/n < x < 2/n, (n = 2, 3, 4.... ), is an
open covering of the interval 0 < x < 1. This is an example of a countable covering.

2. The real line R1 is covered by the collection of all open intervals (a, b). This covering
is not countable. However, it contains a countable covering of R1, namely, all inter-
vals of the form (n, n + 2), where n runs through the integers.
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3. Let S = {(x, y) : x > 0, y > 0}. The collection F of all circular disks with centers
at (x, x) and with radius x, where x > 0, is a covering of S. This covering is not
countable. However, it contains a countable covering of S, namely, all those disks
in which x is rational. (See Exercise 3.18.)

The Lindelof covering theorem states that every open covering of a set S in W
contains a countable subcollection which also covers S. The proof makes use of
the following preliminary result :

Theorem 3.27 Let G = {A1, A2, ... } denote the countable collection of all n-
balls having rational radii and centers at points with rational coordinates. Assume
x e R" and let S be an open set in R" which contains x. Then at least one of the
n-balls in G contains x and is contained in S. That is, we have

x e Ak 9 S for some Ak in G.

Proof. The collection G is countable because of Theorem 2.27. If x e R" and if S
is an open set containing x, then there is an n-ball B(x; r) S S. We shall find a
point y in S with rational coordinates that is "near" x and, using this point as
center, will then find a neighborhood in G which lies within B(x; r) and which
contains x. Write

x = (x1,x2,...,x"),

and let yk be a rational number such that IYk - xkl < rl(4n) for each
k = 1, 2, ... , n. Then

IIY-xII<IY1-x1I+...+IY"-xnI<r
4

Next, let q be a rational number such that r/4 < q < r/2. Then x e B(y; q) and
B(y; q) c B(x; r) c S. But B(y; q) e G and hence the theorem is proved.
(See Fig. 3.2 for the situation in R2.)

B(y; q)

Figure 3.2

Theorem 3.28 (Lindelof covering theorem). Assume A c R" and let F be an open
covering of A. Then there is a countable subcollection of F which also covers A.

Proof. Let G = {A1, A2, ... } denote the countable collection of all n-balls
having rational centers and rational radii. This set G will be used to help us extract
a countable subcollection of F which covers A.
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Assume x e A. Then there is an open set S in F such that x e S. By Theorem
3.27 there is an n-ball Ak in G such that x e Ak S S. There are, of course, infinitely
many such At corresponding to each S, but we choose only one of these, for ex-
ample, the one of smallest index, say m = m(x). Then we have x e Am(X) c S.
The set of all n-balls Am(x) obtained as x varies over all elements of A is a countable
collection of open sets which covers A. To get a countable subcollection of F
which covers A, we simply correlate to each set Ak(X) one of the sets S of -F which
contained Ak(X). This completes the proof.

3.11 THE HEINE-BOREL COVERING THEOREM

The Lindelof covering theorem states that from any open covering of an arbitrary
set A in R" we can extract a countable covering. The Heine-Borel theorem tells
us that if, in addition, we know that A is closed and bounded, we can reduce the
covering to a finite covering. The proof makes use of the Cantor intersection
theorem.

Theorem 3.29 (Heine-Borel). Let F be an open covering of a closed and bounded
set A in R". Then a finite subcollection of F also covers A.

Proof. A countable subcollection of F, say {I1, I2, ... }, covers A, by Theorem
3.28. Consider, for m > 1, the finite union

m

Sm U Ik
k=1

This is open, since it is the union of open sets. We shall show that for some value
of m the union S. covers A.

For this purpose we consider the complement R" - Sm, which is closed.
Define a countable collection of sets {Q1i Q2,... } as follows: Q1 = A, and for
m > 1,

Qm=An(R"-Sm).
That is, Q. consists of those points of A which lie outside of Sm. If we can show that
for some value of m the set Q. is empty, then we will have shown that for this m
no point of A lies outside Sm; in other words, we will have shown that some S.
covers A.

Observe the following properties of the sets Qm : Each set Q. is closed, since
it is the intersection of the closed set A and the closed set R" - Sm. The sets Qm
are decreasing, since the S. are increasing; that is, Qm+ 1 Ez Qm. The sets Qm,
being subsets of A, are all bounded. Therefore, if no set Q. is empty, we can apply
the Cantor intersection theorem to conclude that the intersection nk 1 Qk is
also not empty. This means that there is some point in A which is in all the sets
Qm, or, what is the same thing, outside all the sets Sm. But this is impossible, since
A a Uk 1 Sk. _ Therefore some Qm must be empty, and this completes the proof.
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