Chapter 3

Ordinary Differential Equations

3.1 Differential Equations

» An equation involving derivatives of one or more dependent variables with respect to
one or more independent variables is called a differential equation.
» Here we do not include in the class of differential equations those equations that are

actually derivative identities. For ex. —J.rz = 2z, die“ = ae®.

» A differential equation involving u::nrclin&irj,r clerivativgs of one or more dependent variables
with respect to a single independent variable is called an ordinary differential equation or,
ODE.

» A differential equation involving partial derivatives of one or more dependent variables
with respect to more than one independent variable is called a partial differential equation
or, PDE.

> The order of the highest ordered derivative involved in a differential equation is called
the order of the differential equation.

» The power of the highest ordered derivative(no derivatives involved any fractional power)

involved in a differential equation is called the degree of the differential equation.

(Do It Yourself] 3.1. Find the type, order and the degree of the following differential
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[Hint : Ode(2), Ode(5), Pde(l), Pde(2), Pde(2)]

3.1.1 Linear and Nonlinear ODE

» A linear ordinary differential equation of order n, in the dependent variable y and the
independent variable x, 1s an equation that can be expressed in the form:

n n—1
an(x }j = T an— I{I)fn :51!+---+r12(' )fz+al{z)d—+a0{r)y_b( ) | with a,(z) # 0.

p In linear ODE: 1) Dependent variable y and its various derivatives occur to the first degree only.
2) No products of y and /or any of its derivatives are present. 3) No transcendental functions

of 3y and/or its derivatives occur.

» A nonlinear ordinary differential equation is an ordinary differential equation that is

not linear.
» A linear Ode is said to be linear with constant coefficients if a;'s are all constants.
» A linear Ode i1s said to be linear with variable coeflicients if at least one a; 1s a function

of the independent variable.




[Do It Yourself] 3.2. Find the type and the order of the following differential equations.
Also classify the linear Ode’s in terms of their coeﬁ"icients.
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(Hint : L(2), L(5), NL, NL, NL, L(1), L(1), N NL, L(3)]

[Do It Yourself] 3.3. Find Ode’s by eliminating the arbitrary constants.
(A) ar+by=c. (B) ar+by=1. (C) azx®+by* =c. (D) z* +ay=Db.

[Do It Yourself] 3.4. Classify each of the following differential equations as ordinary/partial
differential equations, also state the order, degree of each equation and determine whether
the equation under consideration is linear or nonlinear. Also classify the linear Ode’s in
terms of their coefficients.
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3.1.3 Various Types of Solution of ODE

» Consider the Ode in the form: F/(x,y, %= e %} = (). Here F'is a real valued function
with (n + 2) arguments.
» A solution |y = f(z)|is said to be an explicit solution of the ode F(z, y, %5 e %} =0

if F(:r' f(x}' f’(x}! e ,f{”](f}] = 0.

» For example, y = 2sin(x) + 3 cos(x) is an explicit solution of the ode gzﬁ +y=0.

» For explicit solution, f(x) is defined with all n order derivatives. Also f(x) and its
derivatives has to be defined for all =.

» A solution | f(z,y) = 0]is said to be an implicit solution of F(zx,y, %= E %j = 0if
flz,y) = 0 satisfies the ode.

» For example, y* — z = 0, = > 0 is an implicit solution of the ode 2y2% = 1.

» For example, 4° + = = 0, = > 0 is a formal solution of the ode ngi"'— + 1 = 0. Since
y? + 1 =0, r > 0 does not define any real function on any interval for = > 0.
» Both explicit and implicit solutions are called solutions.




» The Ode % = 3x? has solution y = 2% as well as y = =°+¢, where ¢ is arbitrary parame-
ter or, constant and the solutions y = x®+¢ is known as one-parameter family of solutions.
» There are various methods exists to solve Ode: Exact method, Series solution, Approx-

imate methods such as numerical solution, graphical method.

3.1.4 Geometric Interpretations

Suppose we have an Ode: % = 2z. This ode may be interpreted as defining the slope 2z
at the point (z,y) for every real .

The ode has a one-parameter family of solutions of the form y = #? + ¢. The solution
geometrically represents (draw it) a one-parameter family of curves (parabola) in the zy-

plane. These parabolas are the integral curves of the differential equation % = 21.

[Do It Yourself] 3.5. Show that x* 4+ 3zy* = 1 is an implicit solution of the differential
equation QIy% + 2% 4+ 4% =0 on the interval 0 < = < 1.

[Do It Yourself] 3.6. Show that every function f defined by f(zr) =2+ ce22% where ¢

ts an arbitrary constant, is a solution of the differential equation % + dry = 8x.

[Do It Yourself] 3.7. Show that every function f defined by f(x) = c1€®® + coe™ =, where
e is an arbitrary constant, is a solution of the differential equation éﬁm% — % — 2y =0.

[Do It Yourself] 3.8. For certain values of the constant m the function [ defined by
flx) = €™ is a solution of the differential equation %‘H; —3% —4%—!— 12y = 0. Determine
all such values of m.

3.1.5 Initial & Boundary Value Problems

» The ode y" = F(z,y,y'), with y(c) = a, y'(¢) = b is known as Initial value problem
(IVP). IVP’s are evaluated at the same point has unique solution.

» The ode ¥’ = F(x,y,y'), with y(e1) = a1, y(di) = by or, y'(e2) = az, y'(dz2) = by is
known as Boundary value problem (BVP). BVP's are evaluated at different points and

generally doesn’t have unique solution. Sometimes it doesn’t possess any solution at all.

» Example: %g + 3% + 2y =0, with y(0) = 1, 3'(0) = 2 is an IVP.

> Example: £¥ + 394 4 338 4y — 0, with y(0) = 1, 4/(0) = 2, y”(0) = 2.5 is an IVP.
> Example: £¥ + 394 4 398 4y — 0, with y(2) = 1, /(2) = 3, y”(2) =5 is an IVP.
» Example: %E + 3% + 2y =0, with y(0) =1, y(1) =2 is a BVP.

» Example: %&1 + 3% + 2y =0, with %/'(0) = 1.5, 3'(1) =2 is a BVP.

» Example: £¥ 4394 4+ 3% 4y — 0, with y(0) = 1, y(1.5) = 2, y(3) = 2.8 is a BVP.
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[Do It Yourself] 3.12. Given that every solution of % — j—y — 12y = 0 may be written
T T

in the form y = c1e% + c9e™3 for some choice of the arbitrary constants ¢ and ez, solve

the IVPs: i) y(0) = 5, 3'(0) = 6. 1) y(0) = =2, 3/'(0) = 6.

Do It Yourself] 3.13. Given that every solution o @ + 1y =0 may be written in the
Ty T2 y [}
T

form y = e sin(x) + eg cos(x) for some choice of the arbitrary constants ¢y and ca, solve

the BVPs: i) y(0) =0, y(w/2) = 1. i) y(0) =0, y(w) = 1. iii) y(0) =1, ¢'(7/2) = —1.

3.1.6 Existence & Uniqueness

Theorem 3.1. The IVP: |y + p(x)y = g(x) with y(xo) = yo| has a unique solution in the
interval [ = {zr:a <z < b} =(a,b) if

1. p(x), g(x) is continuous on I.
2. I contains the point x = xg corresponding to the initial value.

Example 3.1. Find an interval in which the IVP: oy + 2y = 4z%; y(1) = 2 has unique
solution. Also discuss when y(0) = 0.

= Given IVP has the form: |y’ + p(z)y = g(z); y(1) = 2|, where p(z) = 2, g(z) = 4z.
We need to find an interval of x: i) On which p,g are continuwous and ii) Containing
x = 1. It implies the interval is [ = {x : 0 < x < oo} = (0, 00).

So the IVP has unique solution on I.

O If y(0) = 0 then i) demands I = (0,00) but it violates ii) as 0 doesn’t belongs to that
interval. So we can’t conclude anything using the above theorem.

Theorem 3.2. Picards Theorem (A General Approach): Consider the IVP:

d
Z = flz,y), y(zo) = o |
If flx.y) and %!E be continuous in some rectangle a < = < b, ¢ < y < d containing the

point (xo,y0). Then 3 a non-trivial interval Tn — h < < 10 + h contained ina < = < b
such that the IVP has unique solution in rq — h < © < xp+ h.

d 3r? +4x + 2
Example 3.2. Find an interval in which the IVP: L =22 T2 T2 0) = 1 has
dx 2(y —1)

unique solution.

= Note that: The given ODE can’t be written in the form y' + p(z)y = g(x). So we use

Picards Theorem.

. 2 2
Given Ode has the form: % = flz.y)|, where f(x,y) = % = %}5 = —%2.

Both f(r.y) and -gé are continuous ercept y — 1.

Now y(0) = —1 = (0,—1) does not lic on the line y = 1.

So by Picard’s Theorem, 3 a rectangle about (0, —1) in which % = S—I;('ﬁ"'rz; y(0) = —1
has unique solution.



Solving we get, y* — 2y = x> + 2% + 2z +e. Using y(0) = —1 we get, c = 3. Therefore, we
gety? =2y =21+222 412243 = (y—1)2 = (224 2)(z+2) = y = 1+ /(22 + 2)(z + 2).
Using y(0) = —1 we get, y =1 — /(2 + 2)(z + 2). Therefore, v > —2.

1=2,1}

(0.0)

101}

So, the = range of the rectangle is
—2<r<o

Also, the y range of the rectangle is
—co<y<1

So the unigque solution in the
rectangle is

{(z,y): > -2, y<1}.

[Do It Yourself] 3.14. Show that each of the following IVPs has unique solution defined
on some sufficiently small interval |z — 1| < h about x5 = 1: i) ‘fﬂ- = zZsin(y), y(1) = —2.

i) B = 2 y(1) =0,



