3.5.4 Lin Non-Homogeneous Non-Cons Coeff

» lts not easy to get a closed form solution of linear non-homogeneous non-constant co-
efficients.

» If we know a solution then using reduction order method we may find other solutions.
» If we know the solution of homogeneous system then using variation of constants method
we may find other solutions.

» This type of equations may solve through power series solutions.

3.5.5 The Cauchy-Euler’s Equation of Order n

. . - . T
» Cauchy-Euler differential equation of order n is an.r-"i:—g + Gy lmef 4+ 4+

d? d;
a.gargag + a1z gt + agy = b(x).

» We use the transformation z = In(z) = x = e* to solve Cauchy-Euler’s Equation.

L dy _ dyd:z _ 1dy dy _ dy| dy _ 1dy &y _ 1dyy _ 1 dy
»i=h) Z2=FE=1F=>E=2| E=1E=>PF =G =-FF+
1d%y d 1d 1d? 2d? d? dy . ] i
1ogd — L%y Lo = 228 = T4 — ZEie |22D% = Dy(Dy — 1)y| where

_ d — d
» In asimilar way, |23 D3y = Dy(Dy — 1)(Dy — 2)y |, |2*D%y = Dy(Dy — 1)(Dy — 2)(D1 — 3)y

Example 3.14. Solve the Ode: x%y" — 22y’ + 3y = 0.
= [t is a Cauchy-Fuler’s Equation of Order 2.

Let z = In(x) = lgy = ‘ég IQ%% = %g— g_g

So the given equation transforms to j—zg — % - 2% +3y=0= Eii %ﬂ 3y = 0.

Let y = €™* be a trial solution of the equation.

So the auziliary equation is: m2—3m+3=0=m= Si;‘/_

Therefore the general solution is y = 3%/2[¢; cos L"’CQ sin ‘/_z} i.e. y = 1%/?[c] cos —‘/gl;(w) 4

o SIN El;ﬂ} where ¢1, co are arbitrary constants.
[Do It Yourself] 3.71. and the general solution of : 4xy" —4xy'+3y = 0, :rgu"”

y
62y +18y = 0, xty(W) —da2y” +8xy —8y = 0, z2y" —dzy' +6y = 4v—6, x2y" -5z 8‘ =
223, 22y" + dxy/ —|—‘?y—41n( ).

3.6 Series Solution of Linear Ode

Jonsider the second-order homogeneous linear ap(x): ai(x as(x)y =0}, anc
C ler tl l-order 1 o 1 DE Yy’ + Yy + y=20 1
suppose that this equation has no solution that is expressible as a finite linear combination
of known elementary functions. Let us assume that it has a solution in the form of an

infinite series.



We assume that it has a solution expressible in the form

co+c1(x — o) + calw —x0)? + -+ = Y02 o enlx — 20)"

o, €1, Co, -+ are constants. The above expression is called a power series in (x — ) and
the differential equation has a power series solution.

» The equation ag(z)y” + a1(x)y’ + as(z)y = 0 can be written as v” + p(x)y' +q(z)y = 0.
» We will study the conditions under which the differential equation has a series solution.
For this we will go through some ideas first.

3.6.1 Ordinary & Singular Point

» Analytic at a point: A function f(x) is analytic at = ¢ if its Taylor series

T (o) o .
Z . (r — 2¢)" exists and converges to f(x).
» Example: €%, polynomials, sin(x). cos(x), sinh(z) are analytic everywhere, ratio-
nal function are analytic everywhere except the points where denominator is zero i.e.
W is analytic everywhere except z =1, 2.

» Ordinary Point: For an ode: v+ p(z)y’ +q(x)y = 0, a point = ¢ is an ordinary point
= p,q are analytic at = x¢. If the point is not ordinary then it is a singular point.

» Singular point mainly two types : Regular and Irregular.

» A point x = g is a regular point if (x — x¢)p(z), (x —x0)%q(x) are analytic. Otherwise
it is called an irregular point.

» Regular singular points at infinity: Put ¢ = 1/ and check singularity at ¢ = 0. Here

. dy _ dydt 2dy .
r=1/t= 2 =22 =—t*2 and so on.

Example 3.15. Consider the Ode’s: i +(z+1)y' + (22 —32+4)y =0, (z— 3)u”+1¢2y’—|—
%y =0, (22— 1)y" + 32y + (x + 1)y = 0, Bessel Equation : x*y" +zy’ + (22 —n?)y = 0.
Discuss the analytic properties of p(x),q(x).

= p(z) =z + 1, q(x) = 22 — 3z + 4. Both of the functions p,q are polynomial functions
and so they are analytic everywhere. Thus all points are ordinary points of this differential
equation.

O p(z) = a? q(z) = m Here x = 0,3 are singular points (reqular) of the Ode.

r—3°
U p(x) = —3%1 q(z) = ﬁ Here ¥ = —1,1 are singular points (reqular) of the Ode.
Note that: 11111;,3_> 1(1’ ) r) = finite, lim,_s_1(x — 1)%q(z) = finite.
Oplz)==, qlz) = Lr Here x = 0 is a singular point (reqular) of the Ode.

[Do It Yourself] 3.72. Discuss the singularities of the Ode: x*(1—x?)y" + %y’—b—Sy =0.

[Do It Yourself] 3.73. Discuss the reqular singular points of the Ode: xy" + 2y’ +3y =
0. [Ans : 0, o]

[Do It Yourself] 3.74. Show that infinity is not a regular singular point for the Bessel
equation: x%y" + xy' + (22 —n?)y = 0.



Theorem 3.5. Suppose xq is an ordinary point of the differential equation y" + p(x)y’ +
q(x)y = 0 then it has two nontrivial linearly independent power series solutions of the
form 307 o en(x — x0)™ with |z — x¢| < R. [We are not going to detail in the convergence
of the series].

B Note that: (z — 3)y” + 2%y + %y = 0 has singular points # = 0,3. Therefore it has
two linearly independent solutions of the form Z;O:() en(x — x)™ about any point except
xg = 0,3 ie. we can’t assure that ) 7 cp,z™ or, > 7 cu(z — 3)" are solutions of the
Ode.

Example 3.16. Find a power series solution of the IVP: (1—22)y" +zy' —y =0, y(0) =
1, ¥ (0)=1.

= We first observe that all points except x = %1 are ordinary points for the ode. Thus we
could assume solutions of the form y =3 "7 ep(x — x0)™ for any xo # +1. Here y(0) =
1, ¥'(0) =1, we will choose the solutions in the form y = 7" cp(x —0)" =>">  cpa™.
Y= Ymgna™, Y =3 nepa™ Ty =30y n(n — Dega””

So, (1—22)y"+21/—y =0 = (l 2) 3% s n(n—1)cpa™ 24320 nepa™ =30 Jepa™ =0

=3 n(n—1)cz" Zn n—1)e,z™ +> 77 nepz™ =3 > epa™ =0

/

=3 on(n—1)cpz"2 Zn(n — Depa"™ +e1x+Y 00 s nepax™ —cg—crx— oo 5 Cpa =
n=2

o0 : v ’ o0
= Z(n +2)(n+ 1)epaoz™ +c1x — ¢ — 1 — Z[n(n — 1)ey —nep, + cplz™ =0

n=0 _ n=2 _

~ — ~
= 200 + Gesz + Y 07 5(n+2)(n+ 1)eppoa™ — co — Z[TEQ —2n+ 1jepz™ =0
n—2

"

= —cg + 2c9 + Gegax + Z[(n? + 21+ 2)epio — {?1.2 —2n+ 1)cyle™ =0
n==2

'

Equating each term both sides we get,

—co+2c0 =0, 6eg =0, (n + 21+ 2)epio — (12 — 20+ 1)e, = 0.

—on41
co=2c3, c3 =0, cpyo= %zﬁigﬁ‘n

Now, ca =c5=c;r=---=0 and ¢4 = 11202 g = %04 cg = ggcﬁ S0 on.
So the solution is: y = ¢o + ¢y + %‘312 + 5% rt o+ 516 :r 4.
Now given y(0) = 1 = cp = 1 and y'(0) = l =c = 1.

So the solution is: y =1+ = + %.1’.2 + 2—141:4 + %:r:6 + e



- .
* Note: cg =20, c3 =0, cpio = %Q%Cn. |

Now for two linearly independent solutions (here initial conditions are not given), we
can choose the first two terms of the series. The easiest choices are cg = 0,1 = 1 and
co = 1.cy = 0. If any difficulties arise then co = 1,1 =1 and ¢co = 1,¢1 = 0.

Using the first pair we get the solution: y =1+ x —0—%3:2 + 2—149:4 + 23—0;176 + --- Using the
second pair we get the solution: y =1+ %;1?4 + 2%0176 + -

[Do It Yourself] 3.76. Find by power series methods a particular solution of y"”" + %y" —
Elgy =0, y(1)=1, ¥ (1)=0, (1) =1 and y" + (sinx)y + %y = 0.
Ans :y =1+ (:c—21)9 1 (3:—61)3 — (’3;1)4 + (xI;)5 +---[Hint : Put z=x—1 and solve|, y =

ap(l1— 32% — g2 — Lot + ) +ar (o — 32° — Hat + )]




