Chapter 4

Partial Differential Equations

Preliminaries 4.1

- ▶ $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, $r = \frac{\partial^2 z}{\partial x^2}$, $s = \frac{\partial^2 z}{\partial x \partial y}$, $t = \frac{\partial^2 z}{\partial y^2}$, $u_{xy} = \frac{\partial^2 u}{\partial x \partial y}$. ▶ In PDE of z is a dependent variable and x, y are independent variables.
- ▶ Form of PDE of 1st order is f(x, y, z, p, q) = 0.

$$\star \text{W.r.t. } x \Rightarrow \frac{\partial \phi}{\partial u} \left[\frac{\partial u}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial x} \right] + \frac{\partial \phi}{\partial v} \left[\frac{\partial v}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial x} \right] = 0$$

$$\Rightarrow \frac{\partial \phi}{\partial u} \left[\frac{\partial u}{\partial x} + p \frac{\partial u}{\partial z} \right] + \frac{\partial \phi}{\partial v} \left[\frac{\partial v}{\partial x} + p \frac{\partial v}{\partial z} \right] = 0.$$

$$\star \text{W.r.t. } y \Rightarrow \frac{\partial \phi}{\partial u} \left[\frac{\partial u}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial y} \right] + \frac{\partial \phi}{\partial v} \left[\frac{\partial v}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial y} + \frac{\partial v}{\partial z} \frac{\partial z}{\partial y} \right] = 0$$

$$\Rightarrow \frac{\partial \phi}{\partial u} \left[\frac{\partial u}{\partial y} + q \frac{\partial u}{\partial z} \right] + \frac{\partial \phi}{\partial v} \left[\frac{\partial v}{\partial y} + q \frac{\partial v}{\partial z} \right] = 0.$$

★ Note: If
$$u = x^2 + y^2 + z^2 \Rightarrow \frac{\partial u}{\partial x} = 2x$$
, $\frac{\partial u}{\partial y} = 2y$, $\frac{\partial u}{\partial z} = 2z$, and $v = xy^2z \Rightarrow$

$$\frac{\partial v}{\partial x} = y^2 z, \ \frac{\partial v}{\partial y} = 2xyz, \ \frac{\partial v}{\partial z} = xy^2.$$

[Do It Yourself] 4.1. Eliminate arbitrary constants and form the PDE:

i)
$$z = 2(x-\alpha)^2 - 3(y-\beta)^2$$
, ii) $z = (x+a)(y+b)$, iii) $2z = (ax+y)^2 + b$, iv) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$, v) $\ln(az-1) = x + ay + b$, vi) $ax^2 + by^2 + cz^2 = 1$

$$\begin{array}{l} (1) \ z = 2(x-\alpha) - 3(y-\beta) \ , \ (ii) \ z = (x+a)(y+b), \ (iii) \ 2z = (ax+y) + b, \ (iv) \ 2z = \frac{1}{a^2} + \frac{1}{b^2}, \\ (iv) \ \ln(az-1) = x + ay + b, \ vi) \ ax^2 + by^2 + cz^2 = 1. \\ [\underline{Ans}: \ i)z = \frac{p^2}{8} - \frac{q^2}{12}, \ ii)z = pq, \ iii)px = q(q-y), \ iv)2z = px + qy, \ v)p(q+1) = zq, \ vi)zpx + zqy - z^2 = -\frac{1}{c}, \ now \ differentiate]$$

Order and Degree of a PDE 4.1.1

- Order: The order of highest derivative.
 Degree: Power of highest order derivative.
- ▶ i) $x \frac{\partial z}{\partial x} = \left(\frac{\partial^2 z}{\partial x^2}\right)^2$: Order 2 and Degree 2. ii) $\frac{\partial^2 z}{\partial x^2} = xy \frac{\partial^3 z}{\partial x^3}$: Order 3 and Degree 1.

Classification of 1^{st} Order (p,q) PDE 4.2

■ Linear:
$$P(x,y)p + Q(x,y)q = R(x,y)z + S(x,y)$$
,

■ <u>Linear</u>: P(x,y)p + Q(x,y)q = R(x,y)z + S(x,y), <u>Ex</u>. $(xy)p + (x+y^2)q = (x^3y)z + (2+3x)$. Write down two more.

■ Semi-linear:
$$P(x,y)p + Q(x,y)q = R(x,y,z)$$
,
Ex. $(xy)p + (x + y^2)q = x^3yz^2$. Write down two more.

Quasi-linear:
$$P(x,y,z)p + Q(x,y,z)q = R(x,y,z)$$
,
Ex. $(xyz^2)p + (xz + y^2)q = x^3yz^3$. Write down two more.

■ Non-linear:
$$f(x, y, z, p, q) = 0$$
 and not in the form of above three,

Ex. $(p^2 + q^2)y = qz$. Write down two more.

Lagrange's Method 4.2.1

- ▶ The equation is: Pp + Qq = R where P, Q, R are functions of x, y, z.
- ▶ Lagrange's auxiliary equation: $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$.
- ▶ Working Rule: Step i): Using AE: $u(x, y, z) = c_1, v(x, y, z) = c_2$.
- Working Rule: Step ii): General Solution: $\phi(u, v) = 0$, or, $u = \phi(v)$, or, $v = \phi(u)$.
- Working Rule: $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} = \frac{P_1 dx + Q_1 dy + R_1 dz}{P_1 P + Q_1 Q + R_1 R}$. Now if $Denom = 0 \Rightarrow Num = 0$.

Example 4.1. Solve $xzp - yzq = y^2 - x^2$.

$$\Rightarrow \text{ The given equation is } xzp - yzq = y^2 - x^2.$$

$$\text{So Lagrange's AE is } \frac{dx}{xz} = \frac{dy}{-yz} = \frac{dz}{y^2 - x^2} = \frac{xdx + ydy + zdz}{x^2z - y^2z + y^2z - x^2z} = \frac{xdx + ydy + zdz}{0}.$$

$$\text{So } xdx + ydy + zdz = 0 \Rightarrow x^2 + y^2 + z^2 = c_1.$$

$$\text{Again } \frac{dx}{xz} = \frac{dy}{-yz} \Rightarrow \frac{dx}{x} + \frac{dy}{y} = 0 \Rightarrow xy = c_2.$$

$$\text{Therefore, the general solution is } f(x^2 + y^2 + z^2, xy) = 0.$$

So
$$xdx + ydy + zdz = 0 \Rightarrow x^2 + y^2 + z^2 = c_1$$

Again
$$\frac{dx}{xz} = \frac{dy}{-yz} \Rightarrow \frac{dx}{x} + \frac{dy}{y} = 0 \Rightarrow xy = c_2$$
.

Example 4.2. Find the integral surface of the linear PDE $x(y^2 + z)p - y(x^2 + z)q =$ $(x^2-y^2)z$ which contains the line x+y=0, z=1.

$$\Rightarrow$$
 The given equation is $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z$.

So Lagrange's AE is
$$\frac{dx}{x(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{(x^2-y^2)z} = \frac{\frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z}}{0} = \frac{xdx + ydy - dz}{0}$$
.

So
$$\frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z} = 0 \Rightarrow xyz = c_1$$
.

Again
$$x dx + y dy - dz = 0 \Rightarrow x^2 + y^2 - 2z = c_2$$
.

Now
$$z = 1 \Rightarrow c_1 = xy$$
, $c_2 = x^2 + y^2 - 2$.

Also
$$x = -y$$
, $\Rightarrow y^2 = -c_1$, $c_2 = 2y^2 - 2 \Rightarrow c_2 + 2c_1 + 2 = 0 \Rightarrow x^2 + y^2 - 2z + 2xyz + 2 = 0$

Therefore, the integral surface is $x^2 + y^2 - 2z + 2xyz + 2 = 0$.

[Do It Yourself] 4.4. Find the equation of the integral surface of the differential equation $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ which passes through the line x = 1, y = 0.

Integral Surface Orthogonal to a Given Surface 4.2.2

▶ Suppose $f(x, y, z) = c \dots (1)$ is a one parameter family of surface. Then the surface orthogonal to (1) is $p \frac{\partial f}{\partial x} + q \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z}$.

Example 4.3. Find surface which is orthogonal to one parameter system $z = cx(x^2 - y^2)$

Example 4.3. Find surface which is orthogonal to one parameter system and passes through the circle $x^2 + y^2 = 1$, z = 0. \Rightarrow The given equation is $\frac{x(x^2-y^2)}{z} = \frac{1}{c}$... (1). Let $f(x,y,z) = \frac{x(x^2-y^2)}{z}$, So $f_x = \frac{3x^2-y^2}{z}$, $f_y = \frac{-2xy}{z}$, $f_z = -\frac{x(x^2-y^2)}{z^2}$. So the surface orthogonal to (1) is $pf_x + qf_y = f_z$. Now Lagrange's AE is $\frac{dx}{f_x} = \frac{dy}{f_y} = \frac{dz}{f_z} \Rightarrow \frac{dx}{\frac{3x^2-y^2}{z}} = \frac{dy}{-\frac{2xy}{z}} = \frac{dz}{-\frac{x(x^2-y^2)}{z^2}}$.

From i), ii) we get, $\frac{dx}{dy} = \frac{y^2 - 3x^2}{2xy} \Rightarrow y^3(y^2 - 5x^2) = c_1$ From i), ii), iii) we get, $\frac{dx}{3x^2 - y^2} = \frac{dy}{-2xy} = \frac{zdz}{xy^2 - x^3} = \frac{xdx + ydy + 3zdz}{0} \Rightarrow x^2 + y^2 + 3z^2 = c_2$

So any surface which is orthogonal to (1) is of the form $x^2 + y^2 + 3z^2 = f[y^3(y^2 - 5x^2)]$. where f is an arbitrary function.

Now $x^2 + y^2 = 1$, z = 0 implies $f[y^3(y^2 - 5x^2)] = 1$, so the required surface is $x^2 + y^2 + 3z^2 = 1$

[Do It Yourself] 4.22. Find the surfaces orthogonal to the given surfaces: i) z(x+y) = c(3z+1) passes through $x^2 + y^2 = 1, z = 1, ii$ $z = cxy(x^2 + y^2)$ passes

through $x^2 - y^2 = a^2, z = 0$. $[\underline{Ans}: i) \ x^2 + y^2 - 2z^3 - z^2 + 2 = 0, \ ii) \ (x^2 - y^2)^2 (x^2 + y^2 + 4z^2) = a^4 (x^2 + y^2)$

Solutions/Integrals & Compatibility 4.2.3

- ▶ Complete Integral: Complete integral solution is solution of a partial differential equation of the first order that contains as many arbitrary constants as there are independent variables. $f(x, y, z, p, q) = 0 \Rightarrow g(x, y, z, a, b) = 0 \Rightarrow g$ is a complete integral of f.

 Particular Integral: Particular integral solution is a solution free from arbitrary con-
- stants i.e the solution obtained from complete integral by giving particular values to the arbitrary constants.
- ▶ General Integral: Assume $b = \phi(a)$ then $g(x, y, z, a, b) = 0 \Rightarrow g(x, y, z, a, \phi(a)) = 0$. Now eliminating a from $g(x, y, z, a, \phi(a)) = 0$ and $\frac{\partial q}{\partial a} = 0$ we get the general integral.
- ▶ Singular Integral: Singular integral is obtained by eliminating a, b from complete integral g(x, y, z, a, b) = 0 and $\frac{\partial g}{\partial a} = 0$, $\frac{\partial g}{\partial b} = 0$.
- Two PDE's $f_1(x, y, z, p, q)$ and $f_2(x, y, z, p, q)$ are compatible (i.e. every solution of one is a solution of the other) iff $[f_1, f_2] = 0$, where $[f_1, f_2] = \frac{\partial (f_1, f_2)}{\partial (x, p)} + p \frac{\partial (f_1, f_2)}{\partial (z, p)} + \frac{\partial (f_1, f_2)}{\partial (y, q)} + q \frac{\partial (f_1, f_2)}{\partial (z, q)}$.

4.2.4Charpit's Method

Example 4.4. Find a complete, singular and general integrals of $(p^2 + q^2)y = qz$.

 $\Rightarrow \text{ The given equation is } (p^2+q^2)y-qz=0 \text{ ... } (A).$ $So \text{ Charpit's AE is } \frac{dp}{\frac{\partial f}{\partial x}+p\frac{\partial f}{\partial z}}=\frac{dq}{\frac{\partial f}{\partial y}+q\frac{\partial f}{\partial z}}=\frac{dz}{-p\frac{\partial f}{\partial p}-q\frac{\partial f}{\partial q}}=\frac{dx}{-\frac{\partial f}{\partial p}}=\frac{dy}{-\frac{\partial f}{\partial q}}.$ $\Rightarrow \frac{dp}{-pq}=\frac{dq}{p^2}=\frac{dz}{-2p^2y+qz-2q^2y}=\frac{dx}{-2py}=\frac{dy}{-2qy+z}.$ $Using (1), (2) \text{ we get, } p^2+q^2=a.$

So by (A), $ay = qz \Rightarrow q = \frac{ay}{z}$. Again, $p^2 = a - \frac{a^2y^2}{z^2} \Rightarrow p = \frac{\sqrt{az^2 - a^2y^2}}{z}$.

Now putting these values of p,q in pdx + qdy = dz implies $\frac{\sqrt{az^2-a^2y^2}}{z}dx + \frac{ay}{z}dy = dz \Rightarrow zdz - aydy = \sqrt{az^2-a^2y^2}dx \Rightarrow \frac{zdz-aydy}{\sqrt{az^2-a^2y^2}} = dx \Rightarrow 2a\frac{zdz-aydy}{\sqrt{az^2-a^2y^2}} = 2adx \Rightarrow$

 $\sqrt{az^2-a^2y^2}=ax+b\Rightarrow (az^2-a^2y^2)=(ax+b)^2\ ...\ (3).$ The complete integral is $(az^2-a^2y^2)=(ax+b)^2$, where a,b are arbitrary constants.

- ★ Singular Integral: Differentiate (3) w.r.t. a and b we get, $z^2 2ay^2 = 2ax^2 + 2xb$... (4) and 2xa + 2b = 0 ... (5). Eliminating a, b from (3), (4), (5) we get the singular solution.
- ★ General Integral: Replacing b by $\phi(a)$ in (3), we get $(az^2 a^2y^2) = (ax + \phi(a))^2$... (6). Differentiate (6) partially w.r.t. a, we get $z^2 - 2ay^2 = 2(ax + \phi(a))(x + \phi'(a))$... (7). General integral is obtained by eliminating a from (6), (7).

Example 4.5. Find a complete, singular and general integrals of $2xz-px^2-2qxy+pq=0$.

 $\Rightarrow \text{ The given equation is } 2xz - px^2 - 2qxy + pq = 0 \dots (A).$ So Charpit's AE is $\frac{dp}{\partial x} + p\frac{\partial f}{\partial z} = \frac{dq}{\partial y} + q\frac{\partial f}{\partial z} = \frac{dz}{-p\frac{\partial f}{\partial p} - q\frac{\partial f}{\partial q}} = \frac{dx}{-\frac{\partial f}{\partial p}} = \frac{dy}{-\frac{\partial f}{\partial q}}.$ $\Rightarrow \frac{dp}{2z - 2qy} = \frac{dq}{0} = \frac{dz}{px^2 + 2xyq - 2pq} = \frac{dx}{x^2 - q} = \frac{dy}{2xy - p}.$ Using (2) we get, q = a.

So by (A), $p(x^2 - a) = 2x(z - ay) \Rightarrow p = \frac{2x(z - ay)}{x^2 - a}$.

Now putting these values of p,q in pdx + qdy = dz implies $\frac{2x(z-ay)}{x^2-a}dx + ady = dz \Rightarrow$ $\frac{2x}{x^2 - a} dx = \frac{d(z - ay)}{z - ay} \Rightarrow z - ay = b(x^2 - a) \Rightarrow z = ay + b(x^2 - a) \dots (3).$

The complete integral is $z = ay + b(x^2 - a)$, where a, b are arbitrary constants.

 \star Singular Integral: Differentiate (3) w.r.t. a and b we get, y-b=0 ... (4) and $x^2-a=$ 0 ... (5). Eliminating a, b from (3), (4), (5) we get the singular solution $z = x^2y$.

 \bigstar General Integral: Replacing b by $\phi(a)$ in (3), we get $z - ay = \phi(a)(x^2 - a)$... (6).

Differentiate (6) partially w.r.t. a, we get $-y = \phi'(a)(x^2 - a) - \phi(a)$... (7).

General integral is obtained by eliminating a from (6), (7).

[Do It Yourself] 4.23. Find CI for i) pxy + pq + qy - yz = 0, ii) $p^2x + q^2y = z$, $iii) z^2 = pqxy.$

 $[\underline{Ans}: i)(z-ax)(y+a)^a = be^y, ii)\sqrt{(1+a)z} = \sqrt{ax} + \sqrt{y} + b, iii) z = x^a y^{1/a}b$.

[Do It Yourself] 4.24. Consider the first order PDE: p+q=pq, where $p\equiv \frac{\partial z}{\partial x}$, $q\equiv \frac{\partial z}{\partial y}$. Then which of the following are correct?

(A) The Charpit's equation for the above Pde reduce to $\frac{dx}{1-q} = \frac{dy}{1-p} = \frac{dz}{-pq} = \frac{dp}{p+q} = \frac{dq}{0}$. (B) A solution of the Charpit's equation is q = b = constant. (C) The corresponding value of $p = \frac{b}{b-1}$. (D) A solution of the equation is $z = \frac{bx}{b-1} + by + a$.

[Do It Yourself] 4.25. The Charpit's equation for the Pde: $up^2 + q^2 + x + y = 0$, where $p = \frac{\partial u}{\partial x}, q = \frac{\partial u}{\partial y}$ are given by

 $(A) \frac{dx}{-1-p^3} = \frac{dy}{-1-qp^2} = \frac{du}{2p^2u+2q^2} = \frac{dp}{2pu} = \frac{dq}{2q}. \quad (B) \frac{dx}{2pu} = \frac{dy}{2q} = \frac{du}{2p^2u+2q^2} = \frac{dp}{-1-p^3} = \frac{dq}{-1-qp^2}.$