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1 Source of obtaining vital statistics data

• Census

• Vital statistics registers

• Hospital records

• Adhoc surveys

2 Measurement of mortality

2.1 Crude death rate (C.D.R)

Crude death rate is defined as the ratio of total number of death (from all
possible causes) and total population in a given region during a given period
and it is given by,

m =
D

P
× 1000

where m = C.D.R per thousand of population.
D = Total number of deaths (from all causes) which occurred in the given

population during the given period.
P = Total population of the given region during the given period.

2.1.1 Merits

1. Easy to calculate and understand.

2. It is widely used vital statistics rate. In numerous demographic and
public health problems it is used as an index of mortality.

3. Since the entire population of the region is exposed to the risk of mor-
tality, C.D.R can be treated as the probability that a person belonging
to the given population will die in the given period.

2.1.2 Demerits

1. Serious drawback of crude death rate is that it completely ignores the
age and sex distribution of the population. Experience shows that
mortality is different in different segments of the population. Children
in the early ages of their life, and the older generation are exposed to
higher risk of mortality as compared to the younger people. Moreover,
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mortality rate is also different for females irrespective of their age group,
than their male counterparts.

2. It is not suitable for comparing the mortality situation in two places or
same place in two different periods unless,

(i) The population of the places being compared have more or less the
same age and sex distribution.

(ii) Two periods are not too distant, since in a stable large community
age-sex structure of the population shows very little change.

2.2 Specific death rate (S.D.R)

It is calculated for a specific section of the population and is defined as,

S.D.R =
Dsp

Psp

× 100

where Dsp = Number of deaths in the specified section of the population in
a given region during a given period.

Psp = Number of persons in the specified section of the population in the
given region during the given period.
Note: Specificity is made on age, sex, race, occupation etc..

2.3 Age specific death rate (A.S.D.R)

A.S.D.R,

nmx =
nDx

nPx

× 1000

where nDx = Number of deaths in the age group (x, x + n) i.e. number of
deaths between the ages x and x+n−1 l.b.d(last birth day) and nPx = Total
number of people in the age group (x, x + n) in that given region during the
given period.

Taking n = 1, we get the annual A.S.D.R given by,

mx =
Dx

Px

× 1000

To be more specific, the age specific death rates for males and females are
given by,

m
n mx =

m
n Dx

m
n Px

× 1000

and
f
nmx =

f
nDx

f
nPx

× 1000

5



2.3.1 Merits

The death rates specific to age and sex overcome the drawback of C.D.R, since
they are computed by taking into consideration the age and sex composition
of the population. By eliminating the variation in the death rates due to age-
sex distribution of the population S.D.R’s provide more appropriate measures
of the relative mortality situation in the regions.

2.3.2 Demerits

1. S.D.R’s are not of much utility for overall comparison of mortality con-
ditions prevailing in two different regions, say, A and B. For example,
it might happen that for certain age groups the mortality pattern for
region A is greater than that for B, but for the others the case may
be opposite. Hence it will not be possible to draw general conclusion
regarding the overall mortality pattern in region A as compared to the
region B. In overall, to draw some valid conclusions, the different age
or/and sex specific death rates must be combined to give a single figure,
reflecting the true picture of mortality in the region.

2. In addition to age and sex distribution of the population social, occu-
pational and topographical factors come into operation causing what
is called differential mortality. Inclusion of these factors, make S.D.R
more complicated.

2.4 Standardized death rate (S.T.D.R)

We desire to find a single index of mortality viz. weighted average of age
specific death rate for each of A and B. The weights being same in both
the cases. This is done by considering a third population, known as standard
population. Very often we use the life table stationary population as standard.
If A and B be two places the usual procedure is to take as standard the actual
population of a bigger community of which A and B are parts. For comparing
the mortality rates of West Bengal and Uttar Pradesh, the population of India
may be taken as standard.
Let,

Lmx = Specific death rate at age x in the local population.
Smx = Specific death rate at age x in the standard population.
LPx = Number of persons at age x in the local population.
SPx = Number of persons at age x in the standard population. We may

calculate the following four weighted averages viz.,
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(i) Age specific death rates of the local population are weighted with the
numbers of persons at the corresponding ages in the standard population,
i.e. crude death rate of the standard population subjected to age specific
death rates of the local population

=

∑ SPx × Lmx∑
SPx

(ii) Age specific death rates of the standard population are weighted with
the numbers of of persons at the corresponding ages in the local population,
i.e. crude death rate of the local population subjected to age specific death
rates of the standard population

=

∑ LPx × Smx∑
LPx

(iii) Age specific death rates of the local population are weighted with the
numbers of persons at the corresponding ages in the same local population,
i.e. crude death rate of the local population

=

∑ LPx × Lmx∑
LPx

(iv) age specific death rates of the standard population are weighted with
the numbers of persons at the corresponding ages in the same standard pop-
ulation

=

∑ SPx × Smx∑
SPx

(i) i.e.
∑

SPx×Lmx∑
SPx

is the standardized death rate. Some times it is called

Direct Standardization.
(ii) is not suitable as it doesn’t consider the age specific death rates of the
local population.
(iii) is not suitable for comparison purposes because, as we have already
stated, the age distributions of different classes of people are likely to be
different.
(iv) is not at all suitable because it has nothing to do with any local popu-
lation.

The use of formula for direct standardization (i.e.(i)) requires S.D.R’s
(specific death rate) for all segments of the given population (local) be known.
In some cases, however, we may have a population classified according to
age for instance, but the S.D.R’s for the individual age groups may not be
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available, only the total number of deaths and hence the C.D.R may be
known.

In such a case, we may approximately assume,

(i)× (ii) = (iii)× (iv)

⇒ (i)

(iii)
=

(iv)

(ii)

⇒ (i) =
(iv)

(ii)
× (iii)

= c′ × (iii)

where c′ = (iv)
(ii)

i.e. S.T.D.R of local population = c′× C.D.R of local population.
Here c′ is called adjustment factor.

c′ =

∑S Px ×S mx/
∑S Px∑L Px ×S mx/
∑L Px

The calculation of S.T.D.R by adjusting the C.D.R in this manner is called
Indirect Standardization of specific death rates.

2.5 Mortality table or Life table

What is a life table?
Life table is a device for presenting in a compact form, the mortality situation
prevailing in a community. It contains the values of several functions of age in
years. From these values we get answers to questions of the type: If 1,00,000
babies were born at the same time and if they experience through out their
life time the prevailing mortality, how many would reach age 20, age 43 etc.;
what would be the average numbers of persons in the age interval 13 to 14;
what is the probability that a person of age 69 would meet his/ her next
birth day; how many years more can a man of age 60 expect to survive; what
is the average longevity of the person etc..

• Stationary population: A population is said to be stationary if it is
of constant size and constant age and sex composition over time, such
a population is conceived of under the following conditions:

(i) If every year the number of births is exactly l0 (say) and is equal to
the number of deaths and these are distributed uniformly through out
the year.

(ii) If the population is not affected by emigration or immigration.
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• Stable population: concept of a stable population is due to A.J
Lotka is very much akin to (inclined to) that of stationary population.
A population is said to be stable if

(i) it has a fixed age and sex distribution.

(ii) constant mortality and fertility rates are experienced at each age.

(iii) the population is closed to emigration or immigration.

In other words, for a stable population, the over all rates of births and deaths
remain constant and consequently such a population increases at a constant
rate, thus supporting the Mathu’s law (or compound interest law) of popu-
lation growth.

In particular, if the constant over all birth and death rates are equal, then
the population size remains fixed and in this case stable population becomes
stationary population.
Types of life table: Life tables are of two types i.e. (a) Complete life table
and (b) Abridged life table.
Abridged life tables are also of two types i.e. First type (due to G.King)
and Second type (due to Greville, Reed and Merrel)

2.5.1 Description of a complete life table

Age(x) lx dx qx Lx Tx e0
x

0 l0 d0 q0 L0 T0 e0
0

1 l1 d1 q1 L1 T1 e0
1

2 l2 d2 q2 L2 T2 e0
2

...
...

...
...

...
...

...
x lx dx qx Lx Tx e0

x

x + 1 lx+1 dx+1 qx+1 Lx+1 Tx+1 e0
x+1

...
...

...
...

...
...

...

lx : Number of persons who attain (or rather are expected to attain) the
exact age x out of an assumed number of births, say l0, called cohort or radix
of the life table.
dx : Number of persons among the lx persons reaching at age x, who die
before reaching the age x + 1.So,

dx = lx − lx+1

qx : The probability that a person of exact age x will die before reaching age
x + 1. So,

qx =
dx

lx
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Some tables also use another function px which is the probability that a
person of precise age x will survive till his/her next birth day. Therefore,

px =
lx+1

lx
=

(lx − dx)

lx
= 1− dx

lx
= 1− qx

Lx : Number of years lived in the aggregate by the cohort of l0 persons
between ages x and x + 1. So,

Lx =
∫ 1

0
lx+tdt

Note: Each of lx+1 persons live one complete year in the age interval (x, x+
1), dx persons contribute varying fraction of one year in the interval. If ax

be the averages of these fractions, then

Lx = (lx+1 × 1) + (ax × dx) = lx − dx + axdx = lx − dx(1− ax)

If ax = 0.5 which is equivalent to assume that dx deaths are uniformly dis-
tributed in the age interval (x, x + 1) or that lx+t is a linear function of t for
0 ≤ t ≤ 1. Therefore we have,

Lx = lx − 0.5dx =
lx + lx+1

2

Lx can be interpreted in another way. Since (x + 1)− x = 1, then∫ 1

0
lx+tdt =

1

(x + 1)− x

∫ x+1

x
ltdt

can be taken as the average number of persons in the age group (x, x + 1).
Another interpretation of Lx: Suppose in a community there are l0 births
every year distributed uniformly over the year and the mortality rates at dif-
ferent ages (as shown by the qx column) remains the same year after year, and
there is no migration. Then after 100 years or so, the size of the population
will be constant over the years and the age composition of the population
will be constant. So, Lx column represent the age distribution of the life
table.
Tx : Total number of years lived in the aggregate by the cohort after reach-
ing at age x (it is nothing but the total future life time of the lx persons).
Therefore,

Tx =
∫ ∞
0

lx+tdt

another interpretation of Tx is that it is the number of persons with age x or
more in a stationary population.
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e0
x : The average number of years lived after age x by each of the lx persons

who attain that age. It is called the (complete) expectation of life (or life
expectancy) at age x and is obtained from the relation,

e0
x =

Tx

lx

e0
0, expectation of life at age 0, is the average number of years lived at birth

or the average longevity of a person belonging to the given community.
A closely related concept is that of the curtate expectation of life,

denoted by ex, which represents the average number of complete years of life
lived after age x by any of the lx persons who attain age x. Thus we have,

ex =

∑∞
t=1 lx+t

lx
=

1

lx

∞∑
t=1

lx+t

so that,

e0
x = ex +

1

2

2.5.2 Construction of a complete life table

The pivotal column (most important column) of a life table is the qx column.
If the qx column is known then starting with suitable cohort of l0 births we
can compute the life table proceeding as shown below:

l0q0 = d0

l0 − d0 = l1

l1q1 = d1

l1 − d1 = l2

l2q2 = d2

...

Thus lx and dx column can be filled up.
When lx column is known we can fill up Lx column by using the approx-

imate relation

Lx '
1

2
(lx + lx+1)

It is to be noted that this approximate formula does not hold for every years
of life, specially at age 0,1. For the early years, we have to use more elaborate
formula.
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We fill up Tx column by using the relation,

Tx = Lx + Tx+1

So, Tx values are cumulative sums of Lx values from bottom of the table.
Lastly, we compute e0

x by using the relation,

e0
x =

Tx

lx

The unknown qx values are estimated from the age-specific death rates (mx).

mx =
Dx

Px

' dx

Lx

' dx

lx − 1
2
dx

=
dx

lx

1− 1
2

dx

lx

=
qx

1− qx

2

=
2qx

2− qx

⇒ qx =
2mx

(2 + mx)

For the early years of life, the values of mx are usually not so reliable ow-
ing to defects in census records. Besides, the assumption that deaths are
distributed uniformly over the years of age is not valid for the early
ages, especially for age 0: mortality is generally very high in the first few
weeks after birth and then it diminishes sharply. It is, therefore, necessary
to have alternative formulae for qx for say x = 0, 1, 2. We shall consider an
alternative formula for q0 based on registration data alone. here the assump-
tion will be made that the effect of migration is negligible, which is probably
legitimate at age 0. This formula is due to Kuczynski.

Note that in order to survive the first year of age, a child must survive
till the end of the calender year in which it is born and then live long enough
in the next calender year to attain the exact age 1. Hence, denoting the
probabilities of these two events by p′ and p′′, respectively, we have

p0 = p′p′′
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The probabilities p′ and p′′ are estimated by,

p̂′ =
B0 −D0

0

B0

and

p̂′′ =
B−1 −D−1

−1 −D0
−1

B−1 −D−1
−1

respectively, where
B−1 = number of children born in the preceding calender year,
B0 = number of children born in the current calender year,
D0

0 = number of children born and deceased in the current calender year.
D−1
−1 = number of children born and deceased in the preceding calender

year,
D0
−1 = number of children born in the preceding calender year and de-

ceased in the current calender year before reaching age 1,
A formula for qx, due to Chiang, which is applicable for all the age groups
is qx ' mx

1+(1−ax)mx
. Out of lx persons of the cohort alive at age x, lx+1 live

for one full year within the age interval (x, x + 1); the remaining dx, who
die within the age interval (x, x + 1), live for varying fractions of one year.
Suppose ax is the average of these fractions.

In computing Lx, the formula

Lx '
1

2
(lx + lx+1)

is used. But this is not applicable for early years of life. Therefore we can
use

Lx = lx+1 + axdx

= lx − (1− ax)dx

It is applicable for all cases.
Chiang has shown, on the basis of his study of U.S mortality data that for

x ≥ 5, ax = 0.5 irrespective of race, age and sex, and a1 = 0.43, a2 = 0.45,
a3 = 0.47 and a4 = 0.49 irrespective of race and sex, a0 = 0.10 for whites
and a0 = 0.14 for coloureds.

Note that the last age interval in a complete life table will be an open
interval (ω,∞). As such, the L value for the interval, say ∞Lω, will have to
be computed by a formula other than usual one. The general approach is to
make use of the observed A.S.D.R for the age interval together with lω. For
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a life table, the central death rate for the interval will be

∞m′
ω =

∞dω

∞Lω

=
lω

∞Lω

since the persons dying after age ω are precisely those who were alive at that
age. hence replacing ∞m′

ω by the observed A.S.D.R ∞mω, we have

∞Lω '
lω

∞mω

2.5.3 Abridged life table

As opposed to complete life table, which considered the age interval as a year
through out the table and the various functions are calculated for every year
of age, there are abridged life tables. The abridgment may be of two kinds.
In the first type of abridgment the functions are evaluated for single years
of age, as in a complete life table, but these are now given for the greatest
part of the table at intervals of 5 years or 10 years. In the second form of
abridgment the functional values are stated for the major part of the table
for 5 years or 10 years age groups and hence this type is obtained through
a condensation of a complete life table rather than through the omission of
some of its rows.

2.5.4 Construction of abridged life table

King’s Method:
Suppose the life table functions qx, lx and e0

x are to be given at 5 year
intervals in the abridged life table.

Age(x) 0 1 2 3 4 5 10 15 . . . x− 5 x x + 5 . . . . . .

lx l0 l1 l2 l3 l4 l5 l10 l15 . . . lx−5 lx lx+5 . . . . . .
qx q0 q1 q2 q3 q4 q5 q10 q15 . . . qx−5 qx qx+5 . . . . . .
px p0 p1 p2 p3 p4 p5 p10 p15 . . . px−5 px px+5 . . . . . .
...

...
...

...
...

...
...

...
... . . .

...
...

... . . . . . .

Then the first step would be to compute the probabilities of death, qx at the
pivotal ages by the usual procedure. Next one has to form px = 1 − qx for
the pivotal ages.

14



To compute the next life table function lx for the pivotal ages, we note
that

lx+5 = lx ×5 px

log lx+5 = log lx + log 5px

So, it is necessary to compute 5px from the available px values. For the first
pivotal age, 5px is evaluated from Newton’s forward formula as follows:

Ignoring differences higher than the third, we have

log px+1 = log px + 0.2∆ log px − 0.08∆2 log px + 0.048∆3 log px,

log px+2 = log px + 0.4∆ log px − 0.12∆2 log px + 0.064∆3 log px,

log px+3 = log px + 0.6∆ log px − 0.12∆2 log px + 0.056∆3 log px,

log px+4 = log px + 0.8∆ log px − 0.08∆2 log px + 0.032∆3 log px,

Hence we get

log 5px =
4∑

i=0

log px+i

= 5 log px + 2∆ log px − 0.4∆2 log px + 0.2∆3 log px

= 2.4 log px + 3.4 log px+5 − log px+10 + 0.2 log px+15

noting that
∆r log px = (E5 − 1)r log px

For the remaining pivotal ages, one uses Newton’s forward formula based
on px−5, and the differences corresponding to px−5, as follows:

log px = log px−5 + ∆ log px−5,

log px+1 = log px−5 + 1.2∆ log px−5 + 0.12∆2 log px−5 − 0.032∆3 log px−5,

log px+2 = log px−5 + 1.4∆ log px−5 + 0.28∆2 log px−5 − 0.056∆3 log px−5,

log px+3 = log px−5 + 1.6∆ log px−5 + 0.48∆2 log px−5 − 0.064∆3 log px−5,

log px+4 = log px−5 + 1.8∆ log px−5 + 0.72∆2 log px−5 − 0.048∆3 log px−5,

Hence

log 5px = 5 log px−5 + 7∆ log px−5 + 0.6∆2 log px−5 − 0.2∆3 log px−5

= 0.2 log px−5 + 3.2 log px + 2.2 log px+5 − 0.2 log px+10
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Having obtained these, one forms the sum

N ′
x5)

=
5∑

i=1

lx+i

for each pivotal age x. These sums are similar to those involved in eqn. (7)
and eqn. (9). The formula corresponding to (7), for the first pivotal age, is

N ′
x5)

= 5lx + 3∆lx − 0.4∆2lx + 0.2∆3lx

= 1.4lx + 4.4lx+5 − lx+10 + 0.2lx+15

and for formula corresponding to (9), for the other pivotal ages, is

N ′
x5)

= 5lx−5 + 8∆lx−5 + 2.6∆2lx−5 − 0.2∆3lx−5

= −0.2lx−5 + 2.2lx + 23.2lx+5 − 0.2lx+10

In case the formula gives a negative value (this will happen for very high
values of x), N ′

x5)
will be taken to be zero.

By taking cumulative totals of N ′
x5)

starting from the end of the table,

the values of

N ′
x =

∞∑
i=1

lx+i = N ′
x5)

+ N ′
x+5

are obtained.
Lastly, one evaluates e0

x for the pivotal ages by using the fact that

e0
x =

∫∞
0 lx+tdt

lx
≈

1
2
lx + N ′

x

lx

= 0.5 +
N ′

x

lx

Greville’s method and method of Reed and Merrell:

Age(x) lx ndx nqx nLx Tx e0
x

0 l0
...

...
...

...
...

1 l1
...

...
...

...
...

2 l2
...

...
...

...
...

3 l3
...

...
...

...
...

4 l4
...

...
...

...
...

5-10 l4
...

...
...

...
...

10-15 l4
...

...
...

...
...

...
...

...
...

...
...

...
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lx : Number of persons, out of a cohort of l0 persons, living at the begin-
ning of the interval.

nqx : Probability that a person of age x will die before reaching age x+n.

nqx =
lx − lx+n

lx
= 1− lx+n

lx

ndx : Number of deaths in the age group (x, x + n).

ndx = lx ×n qx

nLx =
∫ n
0 lx+tdt : Number of years lived in the aggregate by the cohort

in the age group (x, x + n) or number of members of the life table stationary
population belonging to the age group (x, x + n).

Tx : Total future life time of the cohort after reaching the age x or number
of members of the life table stationary population of age x or above.

Tx =
∫ ∞
0

lx=tdt =n Lx + Tx+n

e0
x : Expectation of life at age x.

e0
x =

Tx

lx

Computation:

nmx =
ndx

nPx

≈ ndx

nLx

≈ 2.ndx

n(2.lx −n dx)

=
2.ndx/lx

n(2−n dx/lx)

=
2.nqx

n(2−n qx)

i.e.

nqx ≈
2n.mqx

2 + n.nmx

But Greville uses more precise formula

nqx =
2n.nmx

2 + n.nmx + n2

6 nm2
x − d

dx
(nmx)

[nmx = nDx

nPx
' ndx

nLx
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Now,

nLx =
∫ n

0
lx+tdt =

∫ x+n

x
ltdt

d

dx
(nLx) =

d

dx

∫ x+n

x
ltdt

=
∫ x+n

x

{
d

dx
lt

}
dt +

d

dx
(x + n).lx+n −

d

dx
(x).lx

= 0 + lx+n − lx

= −ndx

Using Leibnitz’s rule for differentiation of integrals

d

dα

∫ φ2(α)

φ1(α)
F (x, α)dx =

∫ φ2(α)

φ1(α)

∂F

∂α
dx + F (φ2, α)

dφ2

dα
− F (φ1, α)

dφ1

dα

nmx = − 1

nLx

d

dx
(nLx) = − d

dx
(ln nLx)

Therefore,

− ln nLx =
∫

nmxdx + c′

⇒n Lx = e−
∫

nmxdx−c′

= c.e−
∫

nmxdx . . . . . .♣

Now using Euler-Maclaurin’s formula

n−1∑
r=0

f(a+iω) =
1

ω

∫ a+rω

a
f(x)dx−1

2
[f(a + rω)− f(a)]+

ω

12
[f ′(a + rω)− f ′(a)]−. . . . . .

we have,

Tx =
∞∑
i=0

nLx+in

=
1

n

∫ ∞
x

nLtdt− 1

2
[0− nLx] +

n

12

[
0− d

dt
(nLt)t=x

]
+ . . .

=
1

n

∫ ∞
x

nLtdt +
1

2n
Lx −

n

12

d

dt
(nLt)t=x + . . .

=
1

n

∫ ∞
x

c.e−
∫

nmtdtdt +
c

2
e−
∫

nmxdx − n

12

d

dt

(
c.e−

∫
nmtdt

)
t=x

+ . . .

=
c

n

∫ ∞
x

c.e−
∫

nmtdtdt +
c

2
e−
∫

nmxdx − n

12
ce−

∫
nmxdx(−nmx) + . . .

= c
[
1

n

∫ ∞
x

c.e−
∫

nmtdtdt +
1

2
e−
∫

nmxdx +
n

12
nmxe

−
∫

nmxdx + . . .
]
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Differentiating both sides with respect to x, we have approximately,

lx = c

[
1

n

(
−e−

∫
nmxdx

)
+

1

2
e−
∫

nmxdx(−nmx) +
n

12

{
d

dx
(nmx)e

−
∫

nmxdx + nmx.e
−
∫

nmxdx(−nmx)

}]

= ce−
∫

nmxdx

[
− 1

n
− nmx

2
+

n

12

{
d

dx
(nmx)− nm

2
x

}]

= nLx

[
− 1

n
− nmx

2
+

n

12

{
d

dx
(nmx)− nm

2
x

}]

Now,

nqx =
ndx

lx

=
ndx

nLx

.
nLx

lx

' nmx

1
n

+ nmx

2
− n

12

{
d
dx

(nmx)− nm2
x

}
' 2n.nmx

2 + n.nmx + n2

6

{
nm2

x − d
dx

(nmx)
}

]
Reed and Merrell empirically obtained a relationship between nmx and nqx

as

nqx ' 1− e−n.nmx−an3.nm2
x

where a may be taken to be 0.008.

2.5.5 Uses of life tables

1. Life tables are indispensable (absolutely necessary) for the solution
of all questions concerning the duration of human life. These tables
based on scientific uses of statistical methods, are the key stone or
pivots from which the whole science of life hinges. Life tables forms
the basis for determining the rates of premium to various amount of
life assurance. Life table provides the actuarial science with a sound
foundation, converting the life insurance business from a mere gambling
in human lives to the ability to offer well calculated safe guard in the
event of death.

2. Life tables are needed by the demographers to devise measures such
as ‘Net Reproduction Rate’ to study the rate of growth of population.
They have also been used it in preparation of population projections
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by age sex, i.e. in estimating what the size of the population will be at
some future date.

3. Life tables for two or more different groups of population may be used
for for the relative comparisons of various measures of mortality such
as death rate, expectation of life at various ages etc. of particular
interest, in the comparison of e0

0 i.e. the average longevity for members
of a population.

4. Life tables are as well used

(i) by the Government and the private establishments for determining
the rates of retirement benefits to be given to its employees.

(ii) for predicting the school going population in connection with school
building programmes.

(iii) for estimating the probable number of future widows and orphans
in a community.

(iv) for computing the approximate size of future labour forces etc.

3 Measurement of fertility

3.1 Crude birth rate(C.B.R)

Crude birth rate is denoted by i′ and is given by,

i′ =
B

P
× 1000;

where
i′ = Crude birth rate per thousand of population;
B = Number of live births which occurs in the given population during

the given period;
P = Total population of the given region during the given period.

3.1.1 Merit

It is simple, easy to calculate and readily comprehensible. It is based on
the total number of live births and total size of the population and does
not necessitate the knowledge of these figures for different sections of the
community or the population.
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3.1.2 Demerits

1. The crude birth rate, though simple, is only a crude measure of fer-
tility and it is unreliable since it completely ignores the age and sex
distribution of the population.

2. C.B.R, is not a probability, since the whole population cann’t be re-
garded as exposed to the risk of producing children. In fact, only the
females and only those between the child bearing age group (usually
taken as 15 to 49 years) are exposed to the risk and as such whole of the
male population and the female population outside the child bearing
age group should be excluded. Moreover, even among the females who
are exposed to the risk, the risk varies from one age group to another,
a woman under 30 is certainly under greater risk as compared to a
woman over 40.

3. As a consequence of variations of climatic conditions, the child bearing
age groups are not identical in all the countries. In tropical countries
the period starts at an apparent earlier date than in countries with cold
weather. Accordingly crude birth rate does not enable us to compare
the fertility situations in different countries.

4. Crude birth rate assumes that women in all the ages have the same
fertility, an assumption which is not true since younger women have,
in general higher fertility than elderly women. C.B.R thus gives us
an estimate of heterogeneous figure and is unsuitable for comparative
studies.

5. The level of crude birth rate is determined by a number of factors such
as age and sex distribution of the population, fertility of the population,
sex ratio, marriage rate, migration, family planning measures and so on.
Thus a relatively high crude birth rate may be observed in a population
with a favorable age and sex structure even though fertility is low, i.e.
a population with large proportion of the individuals in the age group
15-49 years will have a high crude birth rate, other things remaining
same.

3.2 General fertility rate(G.F.R)

By relating the number of live births to the number of females in the child-
bearing ages, the general fertility rate (G.F.R) is obtained. The formula for
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G.F.R is thus

i =
B∑ω2

ω1

fPx

× 1, 000

where
i = General fertility rate per thousand of females in child-bearing ages;
B = Number of live births in the given region during the given period;
fPx = Number of females of age x l.b.d (last birth day) in the given region

during the given period; and
ω1, ω2 = Lower and upper limits of the female reproductive period re-

spectively. Births to mothers under 15 and 49 years are so rare that they
are not recorded separately but are included in the age groups 15 and 49
respectively.

3.2.1 Merits

1. general fertility rate is a probability since the denominator consists of
the entire female population which is exposed to the risk of producing
children.

2. G.F.R reflects the extent to which the female population in the re-
productive ages increases the existing population through live births.
Obviously, G.F.R takes into account the sex distribution of the popu-
lation and also the age structure to a certain extent.

3.2.2 Demerits

G.F.R gives a heterogeneous figure since it overlooks the age composition of
the female population in the child bearing age. Hence it suffers from the
drawback of non-comparability in respect of time and country.

3.3 Specific fertility rate(S.F.R)

S.F.R is the ratio of the number of births to the female population of the
specified section in a given region to the total number of female population
in that specified section, multiplied by 1000.

Specificity is made on age, marriage, migration, state, region etc..
Age-specific fertility rate:

nix =
nBx

f
nPx

× 1000

where
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nBx = No. of live births to women of age x to x + n − 1 in the given
region during the given period.

f
nPx = No. of women of age x to x + n− 1 in the region during the given

period. If n = 1 , we get annual age-specific fertility rate as

ix =
Bx

fPx

× 1000

Remark 1 1. In the computation of age specific fertility rate, the female
population in the child bearing age group is placed in small age groups
so as to put them in common with other of the child bearing capacity.
Grouping of women of different ages is necessary since the capacity to
bear children varies from age to age e.g. the women in the age group 20
to 25 are more liable to the risk of producing children than the women
in the age group 40 to 45.

2. fertility data for different countries show that generally specific fertility
starts from a low point, rises to a peak some where between 20 and 29
years of age and after that declines steadily. The age-specific fertility
curve is, therefore, a highly positively skewed.

3. Age-specific fertility rate is a probability rate. It removes the drawback
of G.F.R by taking into account the age composition of the women in
the child bearing age group and is thus suitable for comparative studies.
However, the use of age-specific fertility rates for comparing the fertility
is not an easy job. Generally age-specific fertility rate will be higher
for certain age groups and lower for the remaining age groups in one
region than in the other. Accordingly it is different to say if the fertility
is higher or lower in one region as compared to other.

3.4 Total fertility rate(T.F.R)

To be practically useful, age-specific fertility rates have, therefore, to be
combined into a single quantity. For this purpose a standardised fertility
rate may be employed, which is to be computed by the same method as is
used in computation of a standardised death rate. A much simpler method
is to add up the annual age-specific rates and take the sum, called the total
fertility rate (T.F.R), as an index of overall fertility of the community. Thus,

T.F.R =
ω2∑
ω1

ix
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If the age-specific fertility rates are given in age-groups (x, x + n),i.e. width
of the interval is n, then T.F.R is approximately given by,

T.F.R = n
∑
x

nix

In particular, if one deals with quinquennial age group, i.e. n = 5 for each
class, then

T.F.R = 5
∑
x

5ix

4 Measurement of population growth

Measurements of population growths are as follows:

• Crude rate of natural increase and vital index

• Gross reproduction rate

• Net reproduction rate

4.1 Crude rate of natural increase (C.R.N.I)

C.R.N.I is given by the difference of crude birth rate and crude death rate.
Thus,

C.R.N.I = C.B.R− C.D.R

4.2 Vital index (V.I)

V.I is given by the ratio of C.B.R and C.D.R. Thus,

V.I =
C.B.R

C.D.R

4.3 Gross reproduction rate (G.R.R)

G.R.R = 1000×
ω2∑
ω1

f ix = 1000×
ω2∑
ω1

fBx

fPx

If fBx be the number of female babies born to the woman in the age group
(x, x + n), then,

G.R.R = n
ω2∑
ω1

f
nix × 1000 = n

ω2∑
ω1

f
nBx

f
nPx

× 1000
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In particular for the quinquennial data,

G.R.R = 5
ω2∑
ω1

f
5 ix × 1000

Remark 2 1. The computation of G.R.R requires the availability of fol-
lowing data:

(i) the classification of the births according to the age of the mothers
at the time of birth,

(ii) the sex of new born babies. Usually such data are not available. In
that case, however an approximate value of G.R.R may be obtained
under the assumption that sex ratio at births remains more or less
constant at all the ages of the woman in reproductive period.
Now,

sex ratio = no. of male births/no. of female births = constant

⇒
mBx

fBx

= k

⇒
fBx

mBx +f Bx

=
1

k + 1
= c(say)

that is fBx = c(mBx +f Bx) = c.Bx where Bx =m Bx +f Bx is the total
number births to woman of age x during the given period in the given
region.

Now,
fBx

Bx

= c∀x

c =
fBx

Bx

=

∑ω2
ω1

fBx∑ω2
ω1

Bx

=
fB

B

where fB is the total number of female births B is the total number of
births.
Hence,

fBx =
fB

B
×Bx

So,

G.R.R =
fB

B
×
(

ω2∑
ω1

Bx

fPx

)
× 1000

=
fB

B
× T.F.R× 1000
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2. As a measure of fertility, G.R.R is quite useful for comparing the fer-
tility in different regions or in the same region at different periods of
time. Gross reproduction rate may be regarded as measure of the ex-
tent to which a sex under consideration (i.e. female sex in this case) is
replacing itself, unity being the criteria foe exact replacement. Thus if
G.R.R is less than unity, the population would decline no matter how
low the death rate may be and if G.R.R is greater than unity then the
population would increase no matter how high the death rate may be.
Theoretically 0 ≤ G.R.R ≤ s.

3. the accuracy of G.R.R depends upon the accuracy of the computation
of f ix, the main sources of error being

(i) under registration of births,

(ii) under statements or inadequate statements of women age at the
time of registration,

(iii) errors in enumeration or estimates of female population, fPx, by
age groups.

4. G.R.R is computed based on the hypothesis that none of the newly born
female babies is subject to the risk of mortality till the end of the repro-
ductive period of life. This is a very serious limitation of G.R.R, since
all the girls born do not survive till the end of the child bearing span.
Accordingly G.R.R leads to fallacious conclusion as it inflates the num-
ber of potential mothers. The drawback is overcome in net reproduction
rate.

4.4 Net reproduction rate (N.R.R)

To take into consideration the factor of mortality in measuring population
growth, we may to begin with, construct a life table for females on the basis
of the observed age-specific death rates for females, fmx. The values in the
Lx column of the table, denoted by f

nLx, give the mean size of the cohort of
f l0 females in the age interval x to x + n. In the usual notation, let f

nBx be
the number of female births to the women in the age group x to x+n at any
period t (say). Then

f
nLx

f l0
×f

n Bx

gives the average number of female children that would be born to the cohort
f l0 in the age-group x to x + n. The quantity

f
nπx =

f
nLx

f l0

26



gives the life table probability of survival of a female to the age interval x to
x + n and is called survival rate.This implies that out of newly born female
babies f

nπx × 1000 will enter into the child bearing age-interval x to x + n;
f
nπx × 1000 into the age group x + n to x + 2n and so on.

Hence, instead of multiply
f
nBx
f
nPx

by 1000 alone as in G.R.R, we multiply it

by the factor f
nπx× 1000 for each interval x to x + n. Finally a new measure

of (female) population growth known as net reproduction rate, is given by,

N.R.R = 1000×
∑
x

n

[
f
nBx

f
nPx

×f
n πx

]
= 1000×

∑
x

n×f
n ix ×f

n πx

summation being taken over all the age-group of reproductive span.

Remark 3 1. Since N.R.R takes into account the mortality of the new
born (female) babies, we have

N.R.R ≤ 1000×
∑
x

n.
f
nBx

f
nPx

;
[
Since,fn πx ≤ 1

]
⇒ N.R.R ≤ G.R.R

The sign of equality holds iff all the new born girls survive at least till
end of the reproductive period. Thus G.R.R provides an upper limit to
N.R.R and hence, in theory, N.R.R also ranges from 0 to 5 per annum.

2. It may be pointed out that out of a number of girls born to 1000 women,
some die in infancy and some do not marry at all. Of the married
women some become widows and it is only the balance who pass through
the fertility period and thus add to the population growth. Thus N.R.R
may be interpreted as the rate of replenishment of that population.

3. If N.R.R = 1, we may conclude that if the current fertility and female
mortality rates prevail in the future, then a group of new born girls
will exactly replace itself in the next generation, i.e. the present female
generation will exactly maintain itself. Thus in this case the population
has a tendency to remain more or less constant. On the other hand
if N.R.R is greater than unity then the population has a tendency to
increase while N.R.R less than unity indicates a declining population.

4. It should be clearly borne in mind that the use of N.R.R for popula-
tion projections, i.e., for forecasting future population changes is not
desirable at all because of the following two reasons:
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(i) It assumes that current mortality and fertility rates prevail in future,
an assumption which is not true since in practice both these rates go
on changing from time to time.

(ii) It overlooks the factor of migration. The population of a given
region in any given period may be depleted more by emigration rather
than by declining birth rate or it may increase as a result of fresh stock
of immigrants who might be more virile.

5 Population estimation and projection

Estimates of the population inhabiting a region may be

1. An inter censal estimate: The estimate of the population corre-
sponding to a time point between two past censuses,

2. A post censal estimate: The estimate of the population correspond-
ing to a time point in the past but subsequent to the latest census,

3. A projection: The estimate of the population corresponding to a time
point in the future.

5.1 Methods of estimation

• Mathematical method: takes into account the population at time t
(Pt) to be a simple mathematical function of t.

• Component method: It needs not only census data on the popula-
tion size but also registration data on births, deaths and migration.

5.2 Inter censal and post censal estimates by mathe-
matical method

Let t = 0 and t = 1 be, in suitable units and with a suitable chosen origin,
the time points at which the last two censuses were taken place.

Under the assumption of linear growth for the population, we take

Pt = a + bt

Taking t = 0 and t = 1, we then have P0 = a and P1 = a + b, so that the
estimates of a and b are a = P0, b = P1 − P0.
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The fitted equation is then

Pt = P0 + t(P1 − P0)

or, Pt = P0 + t(P1 − P0) . . . . . . (A)

On the other hand, if one assumes exponential growth then one has to write

Pt = abt

Taking t = 0 and t = 1, we have P0 = a and P1 = ab, the estimates of a and
b as a− P0, b = P1

P0
.

the fitted equation is then

Pt = P0(P1/P0)
t

or, Pt = P 1−t
0 P t

1 . . . . . . (B)

(A) and (B) gives inter censal estimates if 0 < t < 1, while they give post
censal estimates if t > 1.

5.3 Inter censal and post censal estimates by compo-
nent method

Let B(0−t), D(0−t), I(0−t) and E(0−t) denote the number of births, the number
deaths, the total immigration and the total emigration occurring between
time 0 and t (0 < t < 1). An inter censal value is,

Pt = P0 + B(0−t) −D(0−t) + I(0−t) − E(0−t);

A post censal value is

Pt = P1 + B(1−t) −D(1−t) + I(1−t) − E(1−t)

with t > 1.

5.4 Projection by mathematical method

Problem: To predict on the basis of the size (and perhaps also the com-
position) of the current population, what the size (and perhaps also the
composition) of the population will be at some future date.

Basic approach: Mathematical method is based on an assumed form of
the population at time t, say Pt, as a function of t.

29



5.4.1 Logistic curve

The population model: Suppose a population has the size P at time t
and the size P +∆P at time t+∆t. The rate of increase of the population at
time t is dP

dt
= lim∆t→0

∆P
∆t

. We may consider the relative growth rate, which
is

1

P
× dP

dt

and examine its behavior as a function of time.
Let us first assume that,

1

P
.
dP

dt
= r; (r > 0)

or,
d log P

dt
= r

where r is a constant.
On integration,

log P =
∫

rdt = rt + a

or, P = Aert; (say)

where A is a positive constant.
Therefore, with constant value of relative growth rate, population follows
compound interest law.

We observe that if t→ −∞, P → 0 and t→∞, P →∞.
The second result appears to be unrealistic, because in a region of fixed area
having limited means of sustenance, the population can not grow without
limit. So the assumption of constant value of relative growth rate has to be
changed.

A reasonable assumption is that relative growth rate decreases as popu-
lation increases with time. Taking a very simple decreasing function of P ,
viz. r(1− kP ), where r and k are positive constants, we can write

1

P
× dP

dt
= r(1− kP )

or,

(
1

P
+

k

1− kP

)
dP

dt
= r

On integration, it gives,

ln P − ln (1− kP ) = rt + a; say
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or,
P

1− kP
= ea+rt = A.ert

where A is a positive constant.

or, P (1 + kAert) = A.ert

or, P =
A.ert

1 + kAert
=

1

k + 1
A
e−rt

when t → −∞, P → 0 and t → ∞, P → 1
k
. Denoting this ultimate

population size by L, we have

P =
L

1 + L
A
e−rt

Let t = β when P = L
2
.

So,
L

2
=

L

1 + L
A
e−rβ

⇒ A = Le−rβ

⇒ P =
L

1 + er(β−t)

This is the form in which the equation to Logistic Curve is generally written.
here r is initial relative growth rate.

5.4.2 Properties of logistic curve

1. The differential equation is

dP

dt
= rP (1− kP )

= rP
(
1− P

L

)

since, r, P , and
(
1− P

L

)
are all positive, dP

dt
is positive. So, according

to the logistic law, the population always increases with time.

2. From,

dP

dt
= rP

(
1− P

L

)

31



we have,

d2P

dt2
= r

dP

dt

(
1− P

L

)
+ rP

(
− 1

L

dP

dt

)

= r
(
1− 2P

L

)
dP

dt

Therefore, d2P
dt2

>=< 0 according as P <=> L
2
.

P takes value L
2

when t = β. So the curve has point of inflection at
t = β and the curve is concave upwards for t < β and convex downwards
for t > β.

3. From,
dP

dt
= rP

(
1− P

L

)
we observe that dP

dt
= 0, when P = 0 and P = L. These values are

attained when t → −∞ and t → ∞. So the curve has two asymp-
totes viz. P = 0 and P = L.The shape of the curve is like an
elongated ‘S’ .

4. Let,

dP

dt
= rP

(
1− P

L

)
= φ(P ), say

⇒ dφ(P )

dt
= r

(
1− P

L

)
dP

dt
+ rP

(
− 1

L

dP

dt

)

= r
(
1− 2P

L

)
dP

dt

Now,

dφ(P )

dt
= 0

⇒ P =
L

2

again,

d2φ(P )

dt2
= r

(
− 2

L

dP

dt

)
dP

dt
+ r

(
1− 2P

L

)
d2P

dt2

= −2r

L

(
dP

dt

)2

+ r2
(
1− 2P

L

)2 dP

dt
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at P = L
2
,

d2φ(P )

dt2
= −2r

L

(
rL

4

)2

Therefore, φ(P ) i.e. dP
dt

is maximum at t = β i.e. Rate of Change of
population is maximum at t = β.

5. The meaning of the constants in the formula are as follows:

L = Ultimate size of population attained when t→∞.

β = The time point when population attains the size L
2
.

r = Value of 1
P
.dP

dt
when t → −∞. So it is the initial growth rate of

population.

5.4.3 Fitting of Logistic Curve

A. Pearl and Reed Method:
Denoting the population size at time point t by Pt, the equation of logistic

curve can be written as

Pt =
L

1 + er(β−t)

There are three constants, viz. L, r, and β, which are to be estimated from
the observed data.

Suppose we are given the population for N equidistant points of time
t = 0, 1, 2, . . . , (N − 1). Since there are three constants, they can be so
chosen as to make the curve pass through three chosen points. The three
points (t, Pt) should be so chosen as to cover the entire range of time more
or less evenly. supposing that the selected points are equidistant on the
time scale, we can denote them by (t, Pt), (t + n, Pt+n), (t + 2n, Pt+2n), or by
suitable change of origin for t, by (0, P0), (n, Pn), (2n, P2n). Since the curve
passes through these points, we have,

1

P0

=
1

L
+

erβ

L

1

Pn

=
1

L
+

er(β−n)

L

1

P2n

=
1

L
+

er(β−2n)

L

Let,

d1 =
1

P0

− 1

Pn

=
erβ (1− e−rn)

L
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d2 =
1

Pn

− 1

P2n

=
er(β−n) (1− e−rn)

L

So,
d1

d2

= ern

or, r =
1

n
(ln d1 − ln d2) . . . . . . (1)

Again,

1− d2

d1

= 1− e−rn =
Ld1

erβ

⇒ d2
1

d1 − d2

=
erβ

L
=

1

P0

− 1

L

⇒ 1

L
=

1

P0

− d2
1

d1 − d2

. . . . . . (2)

r and L can be estimated from (1) and (2). Using these estimates and the
relations

L

P0

− 1 = erβ,

we get the estimate of β as

β =
1

r
log

(
L

P0

− 1
)

Obviously, the estimates obtained by the “method of 3 selected points” are
rough ones. Pearl and Reed suggest a method based on least square princi-
ples, for improving upon the rough estimates.

Regarding P as a function of r, L and β, we can write

P = f(r, L, β) =
L

1 + er(β−t)
.

Therefore,

P ' f(r0, L0, β0) + δr

(
∂f

∂r

)
0

+ δL

(
∂f

∂L

)
0

+ δβ

(
∂f

∂β

)
0

= f0 + δrx + δLy + δβz

where
x =

(
∂f
∂r

)
r=r0,L=L0,β=β0

y =
(

∂f
∂L

)
r=r0,L=L0,β=β0
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z =
(

∂f
∂β

)
r=r0,L=L0,β=β0

by least square principle, the normal equations for determining δr, δL, δβ are∑
i

xi (Pi − f0i) = δr

∑
i

x2
i + δL

∑
i

xiyi + δβ

∑
i

xizi∑
i

yi (Pi − f0i) = δr

∑
i

xiyi + δL

∑
i

y2
i + δβ

∑
i

yizi∑
i

zi (Pi − f0i) = δr

∑
i

xizi + δL

∑
i

yizi + δβ

∑
i

z2
i

the solution of these equations give values of δr, δL and δβ. So we now get
better estimates of r, L and β. This procedure can be repeated to get further
better estimates.
B. Method of Rhodes:

If the logistic curve Pt = L
1+er(β−t) passes through the observed points,

(t, pt), t = 0, 1, 2, 3, . . . , N − 1, we then have for t = i− 1 and t = i,

1

Pi−1

=
1

L
+

er(β−i+1)

L

and
1

Pi

=
1

L
+

er(β−i)

L

so that
1

Pi

=
1− e−r

L
+ e−r 1

Pi−1

The relationship may be put in the form

yi = A + Bxi

where yi = 1
pi

, xi = 1
Pi−1

and A = 1−e−r

L
and B = e−r. Thus the two variables

x and y should be exactly linearly related if the population precisely follows
the logistic law. The problem is to estimate the constants A and B, assuming
that the deviations of the points (xi, yi) from an exact linear relationship arise
from errors in both xi and yi. The proper estimates of A and B are taken to
be

B̂ =

√√√√N−1∑
i=1

(yi − ȳ)2 /
N−1∑
i=1

(xi − x̄)2

and
Â = ȳ − B̂x̄
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where x̄ = 1
N−1

∑N−1
i=1 xi, ȳ = 1

N−1

∑N−1
i=1 yi = x̄ +

[
1

PN−1
− 1

P0

]
.

We can get the estimates of r and L from those of B and A as follows:

r̂ = − ln B̂

and

L̂ =
1− B̂

Â
For finding the estimate of β we observe that

er(β−t) =
L

Pt

− 1

⇒ β =
1

r
ln
(

L

Pt

− 1
)

+ t

Taking t = 0, 1, 2, . . . , N − 1 and adding, we get

β =
1

Nr

N−1∑
t=0

ln
(

L

Pt

− 1
)

+
N − 1

2

Knowing the estimates of r and L, we can get the estimate of β from the
above relation.

6 Force of mortality or Instantaneous death

rate

Let lx be the number of persons at precise age x, and let −∆lx be the number
of persons among them who die between the age x and x + ∆x. Then the
force of mortality at age x is given by,

µx = lim
∆x→0

1

lx

−∆lx
∆x

= − 1

lx

dlx
dx

6.1 Relation between mx and µx

mx = Dx

Px
' dx

Lx
, symbols have their usual meanings.

Now,

Lx =
∫ x+1

x
ltdt

So, dLx

dx
= lx+1 − lx = −dx.

Using Leibnitz’s rule for differentiation of integrals

d

dα

∫ φ2(α)

φ1(α)
F (x, α)dx =

∫ φ2(α)

φ1(α)

∂F

∂α
dx + F (φ2, α)

dφ2

dα
− F (φ1, α)

dφ1

dα
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So,

mx ' − 1

Lx

dLx

dx

' − 1

lx+ 1
2

dlx+ 1
2

dx

= µx+ 1
2

Therefore,
mx = µx+ 1

2

7 Graduation of mortality rates

The observed age specific death rates (mx) as calculated from the census
data and registration data are found to be subject to various irregularities.
For any mathematical work involving these rates, it is necessary to remove
these irregularities. Possible way is to get an expression for mx as a function
of x.

First step is to derive an expression for µx as a function of x and then,
using the relationship between mx and µx, find an expression for mx as a
function of x. Makeham’s attempt in this aspect is successful one.

Makeham assumed that death can occur from one of the two general
causes:

(i) accident, the effect of which may be supposed to be constant through
out the life,

(ii) decrease in the capacity to resist disease.

7.1 Makeham’s graduation formula for mx

If g(x) denotes the power to resist disease at age x, the force of mortality
may be supposed to vary inversely as g(x), provided the factor accident is
absent.

Thus according to Makeham

µx = A +
B

g(x)
,

where A > 0,B > 0 and g(x) is a decreasing function of x.
Makeham further assumed that in a short interval of time a person looses

a constant proportion of the force of resistance as he or she still has.
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Thus he assumed
1

g(x)

dg(x)

dx
= −r; (r > 0)

Hence, we get,

ln g(x) = −
∫

rdx = −k1 − rx

⇒ g(x) = e−k1−rx = k2e
−rx; (k2 > 0)

So,

µx = A +
B

k2e−rx

= A + B′Cx, say

where B′ = B
k2

and C = er As we know that,

mx = µx+ 1
2

= A + B′Cx+ 1
2

= A + B′′Cx

This is known as the Makeham formula for graduation of mortality rates.

Remark 4 Makeham’s formula has been found to be very useful for all ages
from 20 onwards.

7.2 Makeham’s graduation formula for lx

we have found that µx = A + B′Cx.
Again,

µx = − 1

lx
.
dlx
dx

= −d ln lx
dx

⇒ ln lx = −
∫

µxdx = −
∫

(A + B′Cx) dx

= −
(
R + Ax +

B′Cx

ln C

)
= −R− Ax−B1C

x

Therefore,

lx = e−R−Ax−B1Cx

= (e−R).(e−A)x.(e−B1)Cx

= k.sx.gCx
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7.3 Gompertz’s graduation formula for mx

Prior to Makeham, Gompertz deduced a graduation formula for mx. He
proceeded in the same way as Makeham did but he overlooked the ‘accident’
factor.

Taking A = 0, we get (proceeding as before)

µx = B′Cx

⇒ mx ' µx+ 1
2

= B′Cx+ 1
2 = B1C

x

7.4 Gompertz’s graduation formula for lx

Gompertz’s formula for lx is obtained from that of Makeham’s by putting
s = 1 and we have

lx = k.gCx

7.5 Identification of a given set of data

Which one will give a good fit??

Gompertz or Makeham !!!

For mx:-
Gompertz:

mx = BCx

and
mx+1 = BCx+1

⇒ mx+1

mx

= C, constant

So, if we find that ratios of successive values of mx are more or less
constant, then Gompertz’s formula will give a good fit.

Makeham:
mx = A + BCx

⇒ ∆mx = mx+1 −mx = BCx(C − 1)

⇒ ∆mx+1 = mx+2 −mx+1 = BCx+1(C − 1)

⇒ ∆mx+1

∆mx

= C, constant

So, if the ratios of successive first order differences of mx are more
or less constant, Makeham’s formula will give a good fit.
For lx:-
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Gompertz:
lx = k.gCx

⇒ ln lx = ln k + Cx ln g

⇒ ∆ ln lx = Cx(C − 1) ln g

⇒ ∆ ln lx+1 = Cx+1(C − 1) ln g

⇒ ∆ ln lx+1

∆ ln x
= C, constant

So, if the ratios of successive first order differences of ln lx values
are more or less constant, Gompertz’s law will give a good fit.

Makeham:
lx = k.sx.gCx

⇒ ln lx = ln k + x ln s + Cx ln g

Hence,
∆ ln lx = ln s + Cx(C − 1) ln g

⇒ ∆2 ln lx = Cx(C − 1)2 ln g

and
⇒ ∆2 ln lx+1 = Cx+1(C − 1)2 ln g

⇒ ∆2 ln lx+1

∆2 ln lx
= C, constant

So, if the ratios of successive second order differences of ln lx are
more or less constant, Makeham’s law will give a good fit.

7.6 Fitting of Makeham’s formula for lx

1. Method of selected points:

lx = k.sx.gCx

⇒ ln lx = ln k + x ln s + Cx ln g

There are four constants and they can be determined from four inde-
pendent equations. We can find the constants as to make the curve
pass through four chosen points. For better result, the point should
be so chosen as to cover the entire range of data more or less evenly
and for ease of computation they should be equispaced. With suitable
change of origin for x, we denote the chosen points as (0, l0), (n, ln),
(2n, l2n), (3n, l3n).
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Now,

ln l0 = ln k + ln g

ln ln = ln k + n ln s + Cn ln g

ln l2n = ln k + 2n ln s + C2n ln g

ln l3n = ln k + 3n ln s + C3n ln g . . . . . . (1)

∆ ln l0 = n ln s + (Cn − 1) ln g

∆ ln ln = n ln s + Cn(Cn − 1) ln g

∆ ln l2n = n ln s + C2n(Cn − 1) ln g . . . . . . (2)

∆2 ln l0 = (Cn − 1)2 ln g

∆2 ln ln = Cn(Cn − 1)2 ln g . . . . . . (3)

∆2 ln ln
∆2 ln l0

= Cn . . . . . . (4)

we find C from (4). Knowing C, we get g from one of the equations of
(3). Similarly we get s from (2) and k from (1).

2. Method of group average:

Suppose we are given the values of lx for N equidistant values of x,
and let N = 4n + k′, where k′ = 0, 1, 2 or 3. We reject k′ values from
the beginning or the end and divide the remaining 4n values (which we
may conveniently denote by l0, l1, . . . , l4n−1) in four groups of n values
each.

Let,

S1 =
n−1∑
x=0

ln lx = n ln k +
n(n− 1)

2
ln s +

(1− Cn)

(1− C)
ln g

S2 =
2n−1∑
x=n

ln lx = n ln k +
n(3n− 1)

2
ln s +

Cn(1− Cn)

(1− C)
ln g

S3 =
3n−1∑
x=2n

ln lx = n ln k +
n(5n− 1)

2
ln s +

C2n(1− Cn)

(1− C)
ln g

S4 =
4n−1∑
x=3n

ln lx = n ln k +
n(7n− 1)

2
ln s +

C3n(1− Cn)

(1− C)
ln g . . . . . . (1)
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∆S1 = n2 ln s +
(Cn − 1)2

(C − 1)
ln g

∆S2 = n2 ln s +
Cn(Cn − 1)2

(C − 1)
ln g

∆S3 = n2 ln s +
C2n(Cn − 1)2

(C − 1)
ln g . . . . . . (2)

∆2S1 =
(Cn − 1)3

(C − 1)
ln g

∆2S2 =
Cn(Cn − 1)3

(C − 1)
ln g . . . . . . (3)

and lastly,
∆2S2

∆2S1

= Cn . . . . . . (4)

Thus we find C from (4), knowing C, we get g from one of the equations
in (3), s from one of the equations in (2) and lastly k from one of the
equations in (1).
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