1.2.8 Sample Space

The sample space of a statistical experiment is a pair (Ω, S) , where

- Ω is the set of all possible outcomes of the experiment and
- S is a σ-field of subsets of Ω.
- The elements of Ω are called sample points.
- Any set A ∈ S is known as an event.
- ▶ An event is a collection of sample points.
- ▶ Each one-point set is known as a <u>simple or an elementary event</u>. For example, tossing of coin is a simple event but if we are tossing a coin and rolling a die simultaneously then it will not be called a simple event as two events are occurring simultaneously.
- ▶ If the set Ω contains only a finite number of points, we say that (Ω, \mathcal{S}) is a finite sample space.
- \blacktriangleright If Ω contains at most a countable number of points, we call (Ω, \mathcal{S}) a discrete sample space.
- ▶ If Ω contains uncountably many points, we say that (Ω, \mathcal{S}) is an uncountable sample space.
- ▶ If $\Omega = \mathbb{R}^k$ or some rectangle in \mathbb{R}^k then we say that it a continuous sample space.

Example 1.3. Suppose we toss a coin one time then find Ω and S.

- \square The set $\Omega = \{H, T\}$, where H denotes head and T is the tail. Also, S is the class of all subsets of Ω , i.e. $S = \{\phi, \{H\}, \{T\}, \{H, T\}\} = \{\phi, \{H\}, \{T\}, \Omega\}$.
- Any set $A \in \mathcal{S}$ is known as an <u>event</u>. For ex. Ω is an event that either head or tail appear. Also ϕ is an event that neither head nor tail appear.

Event: An event is a subset of sample space.

- ▶ <u>Simple Event</u>: If an event contains only one sample point, it is known as simple / elementary event.
- ▶ Composite Event: If an event contains more than one sample point, it is known as composite event.

Example 1.4. Suppose we toss a coin two times then find Ω and S. Also find the event that at least one tail occur.

- $\Box \ \ The \ set \ \Omega = \{HH, HT, TH, TT\}, \ where \ H \ \ denotes \ head \ and \ T \ \ is \ the \ tail. \\ Also, \mathcal{S} \ is \ the \ class \ of \ all \ subsets \ of \ \Omega, \ i.e. \ \mathcal{S} = \{\phi, \{HH\}, \{HT\}, \{TH\}, \{TH\}, \{HH, HT\}, \{HH, HT, TT\}, \{HH, TT\},$
- \Box The event that at least one tail occur consists of sample points $\{HT, TH, TT\}$.
- [Do It Yourself] 1.10. A coin is tossed until the first head appears then find Ω and S.
- [Do It Yourself] 1.11. A die is thrown then find Ω and S.

1.2.10 Borel Set $(in \mathbb{R})$

- \blacksquare A set that can be obtained from the union, intersection and relative complement of enumerable collection of closed and open sets (for the time being take interval) in \mathbb{R} , is known as Borel set.
- Specifically, In \mathbb{R} , every interval of the form (x, y] is a Borel set and the σ -field generated by (x, y] is called Borel σ -field. It is denoted by \mathcal{B} .
- $\blacktriangleright \mathcal{B} = \sigma(x,y) = \sigma(x,y) = \sigma(x,y) = \sigma(x,y) = \sigma(x,\infty) = \sigma(x,\infty) = \sigma(-\infty,x) = \sigma(-\infty,x).$
- ▶ Any interval or, one point set is a Borel set and the Borel σ -field \mathcal{B} can be generated by any above type of intervals.
- ▶ If $\Omega = \mathbb{R}^2$ or, $\Omega = [a, b] \times [c, d]$ then $S = \mathcal{B}_2$ and so on.

[Do It Yourself] 1.17. Show that the σ -field generated by (x, y] is \mathcal{B} contains all one point sets and all intervals.

$$\frac{Hint}{\mathcal{B}}: (x,y) = \bigcup_{i=1}^{\infty} (x,y-\frac{1}{n}] \in \mathcal{B}, \ (x-\frac{1}{n},x+\frac{1}{n})^c \in \mathcal{B} \Rightarrow \bigcup_{i=1}^{\infty} (x-\frac{1}{n},x+\frac{1}{n})^c \in \mathcal{B} \Rightarrow \bigcap_{i=1}^{\infty} (x-\frac{1}{n},x+\frac{1}{n})^c \in \mathcal{B} \Rightarrow \bigcap_{i=1}^{\infty} (x-\frac{1}{n},x+\frac{1}{n}) \in \mathcal{B} \Rightarrow \{x\} \in \mathcal{B}, \ [x,y] = (x,y] \cup \{x\}, \ [x,y) = (x,y) \cup \{x\}, \ (-\infty,y) = \bigcup_{i=1}^{\infty} (-n,y), \ so \ on.$$

1.2.11 Problems on Uncountable Sample Space

- ▶ Suppose each point on the circumference of a circle with radius r is a possible outcome of the experiment. Then Ω consists of all points within $[0, 2\pi r)$.
- ▶ Every one-point set $\{x \in [0, 2\pi r)\}$ is a simple event.
- ▶ Here S is taken to be the Borel σ -field of subsets of $[0, 2\pi r)$.
- ▶ The events of interest are the length of arc traveled by the point.
- ▶ In discrete sample space, every one-point set is also an event, and S is the class of all subsets Ω .
- ▶ In uncountable sample space, not all subsets Ω events. The case of most interest is the one in which $\Omega = \mathbb{R}^p$. Here roughly all sets that have a well-defined volume (or area or length) are events.
- Example 1.8. A rod of length l is thrown onto a flat table, which is ruled with parallel lines at distance 2l. The experiment consists in noting whether the rod intersects one of the ruled lines. Then how do you construct Ω and S?
- \Box Let r be the distance from the center of the rod to the <u>nearest ruled line</u> and θ be the angle that the axis of the rod makes with <u>this line</u>. So here, $0 \le r \le l$, since the nearest ruled line from the center of the rod always lies between 0 and l. Also the range of θ is $0 \le \theta < \pi$.

Therefore, if we know (r, θ) , we can express the location of the rod on the table. Now if we throw the rod it will either intersect a line or, land within two lines. To construct Ω , we will take all possible outcome of the throw which is equivalent to all possible value of (r, θ) i.e. $\Omega = I(r, \theta) : 0 \le r \le I(0 \le \theta \le \pi)$

 (r, θ) i.e. $\Omega = \{(r, \theta) : 0 \le r \le l, 0 \le \theta < \pi\}.$ S is the σ -field generated by $[0, l] \times [0, \pi)$ i.e. $S = \mathcal{B}_2 = \sigma([0, l] \times [0, \pi)).$

1.3 Probability

Let (Ω, S) be the sample space associated with a statistical experiment. Now we will define a probability set function and study some of its properties.

- ▶ A set function is a function whose input is a set and the output is usually a number.
- ▶ Suppose $S = \{1, 2, 3, 7\}$, and a set function f is defined the numbers of elements in S. Here $f: S \to \mathbb{Z}^+$ and f(S) = 4.

1.3.1 Probability Axioms

Let (Ω, \mathcal{S}) be a sample space. A set function P defined on \mathcal{S} is called a <u>probability measure</u> (or simply probability) if it satisfies the following conditions:

- 1. $P(A) \ge 0, \forall A \in \mathcal{S}$.
- 2. $P(\Omega) = 1$.
- 3. If A_1, A_2, \cdots are disjoint sequence of sets i.e. $A_i \cap A_j = \phi, i \neq j$.

Then
$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$
.

- \triangleright P(A) is known as the probability of event A.
- Property (3) is called countable additivity.
- ▶ Probability is a function that has a set for an input, and a real number as an output between [0,1].

1.3.4 Probability Space

The triplet (Ω, S, P) is called a probability space.

- ▶ Let $A \in \mathcal{S}$, we say that the <u>odds for</u> A are a to b if $PA = \frac{a}{a+b}$, and then the <u>odds against</u> A are b to a.
- ▶ Suppose $\Omega = \{H, T\} \Rightarrow \mathcal{S} = \{\phi, \{H\}, \{T\}, \Omega\}$. Now define P on \mathcal{S} as $P(\{H\}) = \alpha$, $P(\{T\}) = 1 \alpha \Rightarrow P$ defines a probability on (Ω, \mathcal{S}) . Note that, here all 3 axioms are satisfied.
- ▶ We can make equally likely argument by taking $\alpha = 1/2$.
- ▶ Suppose $\Omega = \{1, 2, 3, \dots\} \Rightarrow \mathcal{S} = \text{Class of all subsets of } \Omega$. Now define P on \mathcal{S} as $P(\{i\}) = \frac{1}{2^i}, \ i = 1, 2, \dots$. Here $\sum_{i=1}^{\infty} P(\{i\}) = 1 \Rightarrow P$ defines a probability on (Ω, \mathcal{S}) .
- ▶ We can't make equally likely argument for countable number of points.
- ▶ Suppose $\Omega = (0, \infty) \Rightarrow \mathcal{S} = \mathcal{B}$. Define P for each interval $A \in \mathcal{S}$ as, $P(A) = 2 \int_A e^{-2x} dx$. Note that, $P(A) \geq 0$, $P(\Omega) = 1$ and P is countably additive by properties of integrals.

[Do It Yourself] 1.21. Let Ω be the set of all nonnegative integers and S the class of all subsets of Ω . Does (Ω, S, P) define a probability space?

- (a) For $A \in \mathcal{S}$, $P(A) = \sum_{x \in A} \frac{e^{-\lambda} \lambda^x}{x!}$, $\lambda > 0$.
- (b) For $A \in S$, $P(A) = \sum_{x \in A} p(1-p)^x$, 0 .
- (c) For $A \in \mathcal{S}$, let P(A) = 1 if A has a finite number of elements, and P(A) = 0 otherwise.

 $[Ans: Y, Y, N. \ Hint: (\Omega, S) \ is \ a \ sample \ space. \ To \ show \ P \ satisfies \ 3 \ axiom]$

[Do It Yourself] 1.22. Let $\Omega = \mathbb{R}$ and $S = \mathcal{B}$. In each of the following cases does P define a probability on (Ω, S) ?

- (a) For each interval I, $P(I) = \int_{I} \frac{1}{\pi(1+x^2)} dx$.
- (b) For each interval I, P(I) = 1 if I is an interval of finite length and P(I) = 0 otherwise.
- (c) For each interval I, P(I) = 0 if $I \subseteq (-\infty, 1)$ and $P(I) = \int_{I} \frac{1}{2} dx$ if $I \subseteq (1, \infty)$.

 $[Ans: Y, N, N. \ Hint: (\Omega, S) \ is \ a \ sample \ space. \ To \ show \ P \ satisfies \ 3 \ axiom]$

[Do It Yourself] 1.23. If $A, B \in \mathcal{S}$, then show that $P(A \setminus B) = P(A) - P(A \cap B)$. \square <u>Hint:</u> $A = (A \setminus B) \cup (A \cap B)$. Now apply countable additivity.

[Do It Yourself] 1.24. Suppose $A, B \in \mathcal{S}$, if $A \subseteq B$ i.e. monotone then show that $P(A) \leq P(B)$ i.e. P is subtractive.

 \square <u>Hint:</u> $B = (B \setminus A) \cup (A \cap B) = (B \setminus A) \cup A$. Now apply countable additivity.

Theorem 1.1. Addition Rule:

If $A, B \in \mathcal{S}$, then show that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

 \square <u>Hint:</u> $(A \cup B) = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$. Now apply countable additivity.

[Do It Yourself] 1.25. Express i) $A_1 \cup A_2 \cup A_3$, ii) $\bigcup_{i=1}^n A_i$, iii) $\bigcup_{i=1}^\infty A_i$ as union of disjoint sets.

[Do It Yourself] 1.26. If $A \in \mathcal{S}$, then show that $P(A^c) = 1 - P(A)$.

[Do It Yourself] 1.27. If $A, B \in \mathcal{S}$, then show that $P(A \cup B) \leq P(A) + P(B)$.

Example 1.9. If
$$A_1, A_2, \dots \in \mathcal{S}$$
, then show that $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$.

⇒ Here we will use mathematical induction to prove the result.

Now we know, $P(A_1 \cup A_2) \leq P(A_1) + P(A_2)$. [To show]

So the result is true for n = 2.

Again $P(A_1 \cup A_2 \cup A_3) \leq P(A_1 \cup A_2) + P(A_3) \leq P(A_1) + P(A_2) + P(A_3)$. [Using the result, n=2

So the result is true for n = 3.

Let us assume the result is true for n = m i.e. $P(\bigcup_{i=1}^{m} A_i) \leq \sum_{i=1}^{m} P(A_i)$. Now $P(\bigcup_{i=1}^{m+1} A_i) \leq \sum_{i=1}^{m} P(A_i) + P(A_{m+1}) \leq \sum_{i=1}^{m+1} P(A_i)$. [Using the result, n = 2, m]

Therefore by mathematical induction, the result is true for $n \in \mathbb{N}$ i.e. $P(\bigcup A_i) \leq \sum P(A_i)$.

Theorem 1.2. Principle of Inclusion-Exclusion (Poincare):

If $A_1, A_2, \dots, A_n \in \mathcal{S}$, then show that

$$P\Big(\bigcup_{i=1}^{n} A_i\Big) = \sum_{i=1}^{n} P(A_i) - \sum_{i< j}^{n} P(A_i \cap A_j) + \sum_{i< j< k}^{n} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} P\Big(\bigcap_{i=1}^{n} A_i\Big).$$

$$\square$$
 Hint: $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$. [For $n = 2$]

$$\Box \underline{Hint:} \ P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2). \ [For \ n = 2]$$

$$P(A_1 \cup A_2 \cup A_3) = P(A_1 \cup A_2) + P(A_3) - P[(A_1 \cup A_2) \cap A_3] = \sum_{i=1}^3 P(A_i) - P(A_1 \cap A_2) - [P(A_1 \cap A_3) + P(A_2 \cap A_3) - P(\overline{A_1 \cap A_3} \cap \overline{A_2 \cap A_3})] = \sum_{i=1}^3 P(A_i) - P(A_1 \cap A_2) - P(A_1 \cap A_2) - P(A_1 \cap A_3)$$

$$[P(A_1 \cap A_3) + P(A_2 \cap A_3) - P(\overline{A_1 \cap A_3} \cap \overline{A_2 \cap A_3})] = \sum_{i=1}^{3} P(A_i) - P(A_1 \cap A_2) - P(A_1 \cap A_3)$$

$$A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) = \sum_{i=1}^{3} P(A_i) - \sum_{i< j}^{3} P(A_i \cap A_j) + P(A_1 \cap A_2 \cap A_3).$$

So the result is true for
$$n = 3$$
. Let us assume the result is true for $n = m$ i.e.
$$P\left(\bigcup_{i=1}^{m} A_i\right) = \sum_{i=1}^{m} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{m+1} P\left(\bigcap_{i=1}^{m} A_i\right)$$

Now,
$$P\left(\bigcup_{i=1}^{m+1} A_i\right) = P\left(\bigcup_{i=1}^m A_i \cup A_{m+1}\right) = P\left(\bigcup_{i=1}^m A_i\right) + P(A_{m+1}) - P\left(\bigcup_{i=1}^m A_i \cap A_{m+1}\right)$$

$$= \left[\sum_{i=1}^{m+1} P(A_i) - \sum_{i < j}^{m} P(A_i \cap A_j) + \sum_{i < j < k}^{m} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{m+1} P(\bigcap_{i=1}^{m} A_i) \right] - \dots + (-1)^{m+1} P(\bigcap_{i=1}^{m} A_i) = 0$$

$$\Big[\sum_{i=1}^{m} P(A_i \cap A_{m+1}) - \sum_{i< j}^{m} P(A_i \cap A_j \cap A_{m+1}) + \sum_{i< j< k}^{m} P(A_i \cap A_j \cap A_k \cap A_{m+1}) - \dots + (-1)^{m+1} P\Big(\bigcap_{i=1}^{m+1} A_i\Big)\Big]$$

$$= \left[\sum_{i=1}^{m+1} P(A_i) - \sum_{i< j}^{m+1} P(A_i \cap A_j) + \sum_{i< j< k}^{m+1} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{m+2} P\left(\bigcap_{i=1}^{m+1} A_i\right) \right].$$

Theorem 1.4. Bonferroni's Inequality

If
$$A_1, A_2, \dots, A_n \in \mathcal{S}$$
, then show that $\sum_{i=1}^n P(A_i) - \sum_{i < j}^n P(A_i \cap A_j) \le P\left(\bigcup_{i=1}^n A_i\right) \le \sum_{i=1}^n P(A_i)$.

 \square <u>Hint:</u> Easy one.

Theorem 1.5. Boole's Inequality:

If
$$A_1, A_2, \dots \in \mathcal{S}$$
, then show that $P\left(\bigcap_{i=1}^{\infty} A_i\right) \geq 1 - \sum_{i=1}^{\infty} P(A_i^c)$.

 \square *Hint:* Easy one.