Chapter 2

Random Variables

2.1 Definition

- Basic Definition: A random variable X is a variable that takes a definite set of real values with a definite set of probabilities. If X can assume at most a finite or, countably infinite number of values, X is said to be a discrete random variable, otherwise it is said to be a continuous random variable.
- ▶ Suppose a coin is thrown 3 times and we are concern about the number of heads. Then we can define a random variable X= Number of heads as

$$X = \begin{cases} 0 & \text{with probability } \frac{1}{8} \\ 1 & \text{with probability } \frac{3}{8} \\ 2 & \text{with probability } \frac{3}{8} \\ 3 & \text{with probability } \frac{1}{8} \end{cases}$$

- ▶ A random variable is <u>associated</u> with a <u>probability distribution</u> whereas there is no such probability concept in a <u>real-valued function of a real variable</u>.
- General Definition I: Let (Ω, \mathcal{S}) be a sample space. A finite, single-valued function X which maps Ω into \mathbb{R} is called a <u>random variable</u> if the inverse images under X of all Borel sets in \mathbb{R} are events i.e. $X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \mathcal{S}, \forall B \in \mathcal{B}.$
- ▶ A random variable is a <u>measurable function</u> defined on a probability space whose outcomes are real numbers.
- ▶ A real-valued function on (Ω, S) is a random variable iff <u>any class</u> \mathbb{U} of subsets of \mathbb{R} which generates \mathcal{B} (see Chapter 1, Borel Set) is an event.
- General Definition II: A real-valued function X on (Ω, \mathcal{S}) is a random variable iff $(-\infty, x], x \in \mathbb{R}$ is an event i.e. $X^{-1}(-\infty, x] = \{\omega : X(\omega) \in (-\infty, x]\} = \{X \leq x\} \in \mathcal{S}$.
- ▶ Note that, If X is a random variable, the sets $\{X = x\}$, $\{a < X \le b\}$, $\{X < x\}$, $\{a \le a \le b\}$
- X < b, $\{a < X < b\}$, $\{a \le X \le b\}$, etc. are all events. Moreover, we could have used any of these intervals (i.e. any sets generates \mathcal{B}) to define a random variable.
- ▶ Note that, $X : \Omega \to \mathbb{R}$ is a random variable if $X^{-1}(B) \in \mathcal{S}$, $\forall B \in \mathcal{B}$. Remember that, it is possible to find subsets of \mathbb{R} which do not belong to \mathcal{B} , so there exist real-valued functions defined on Ω which are not random variables. Random variables are Borel measurable.

Example 2.1. Let $\Omega = \{H, T\}$ and S be the class of all subsets of Ω . Define X by X(H) = 1, X(T) = 0. Then show that X is a random variable. $\Rightarrow Now$

$$X^{-1}(-\infty, x] = \begin{cases} \phi & \text{if } x < 0 \\ \{T\} & \text{if } 0 \le x < 1 \\ \{H, T\} & \text{if } 1 \le x \end{cases}$$

Therefore, $\forall x \in \mathbb{R}, X^{-1}(-\infty, x] \in \mathcal{S} \Rightarrow X$ is a random variable.

[Do It Yourself] 2.1. Let $\Omega = \{HH, HT, TH, TT\}$ and S be the class of all subsets of Ω . Define X by $X(\omega) = No$. of heads in ω , $\omega \in \Omega$. Then show that X is a random variable. Find the domain, range of X and draw the mapping.

[Do It Yourself] 2.2. Let Ω be the outcome of tossing a coin thrice and $\mathbb S$ be the class of all subsets of Ω . Define X by $X(\omega) = No$. of heads in ω , $\omega \in \Omega$. Then show that X is a random variable. Find the domain, range of X and draw the mapping. What are the values that X assigns to points of Ω ? Also find the events $\{1.2 \le X < 2.1\}$, $\{X < 1.5\}$, $\{X \le 2.5\}$, $\{0.2 \le X \le 3.1\}$.

[<u>Hint</u>: $\Omega = \{HHH, HHT, \dots, TTT\}, X(\omega_1) = 3, \dots, X(\omega_8) = 0, write X(\omega) function e.g. <math>X(\omega) = 3$, if $\omega = \omega_1, X(\omega) = 2$, if $\omega = \omega_2, \omega_3, \omega_4$, so on and find the required events]

[Do It Yourself] 2.3. A die is tossed two times. Let X be the sum of face values on the two tosses and Y be the absolute value of the difference in face values. What is Ω ? What values do X and Y assign to points of Ω ? Check to see whether X and Y are random variables.

[Do It Yourself] 2.6. Let $\Omega = [0,1]$ and $S = \mathcal{B}[0,1]$. Define X by $X(\omega) = \omega$, $\omega \in \Omega$. Then show that X is a random variable. Find the domain, range of X and draw the mapping. Also find the events $\{0.2 \le X < 0.5\}$, $\{X < 0.5\}$.

 $[\underline{Hint}: Since \ any \ Borel \ subset \ of \ [0,1] \ is \ an \ event \Rightarrow X^{-1}(B) \in \mathcal{S}, \ \forall B \in \mathcal{B}; \ X(\omega) = \omega, \ \omega \in [0,1] \Rightarrow X^{-1}(\omega) = \omega \Rightarrow X^{-1}[0.2,0.5) = [0.2,0.5)]$

Example 2.2. Let X be a random variable. Is |X| also an RV? If X is a random variable that takes only nonnegative values, is \sqrt{X} also an RV?

 $\Rightarrow X \text{ is a random variable} \Rightarrow \{\omega : X(\omega) \leq x\} \in \mathcal{S}. \text{ Also } \{\omega : -x \leq X(\omega) \leq x\} \in \mathcal{S} \text{ as } [-x,x] \text{ generates } \mathcal{B}.$

Now for x < 0, $\{\omega : |X(\omega)| \le x\} = \phi \in \mathcal{S}$.

Now $\overline{for\ x \ge 0}$, $\{\omega: |X(\omega)| \le x\} = \{\omega: -x \le X(\omega) \le x\} = \{\omega: -x \le X(\omega) \le x\} \in \mathcal{S}$. Therefore |X| is a random variable.

 $\square \{\omega : \sqrt{X(\omega)} \le x\} = \{\omega : X(\omega) \le x^2\} \in \mathcal{S}. \text{ Therefore } \sqrt{X} \text{ is a random variable.}$

[Do It Yourself] 2.8. Let X be a random variable. Then i) X^2 , ii) aX + b, iii) $\frac{1}{X}$, $\{X = 0\} = \phi$ are Random Variable?

2.2 Probability Distribution of a RV

- The random variable X defined on the probability space (Ω, \mathcal{S}, P) induces a probability space $(\mathbb{R}, \mathcal{B}, Q)$ through $Q(B) = P\{X^{-1}(B)\} = P\{\omega : X(\omega) \in B\} \ \forall B \in \mathcal{B}\}.$
- ▶ Here the set function Q or, PX^{-1} is the probability distribution of X.
- ▶ Since Q is a set function it is difficult to handle and therefore we will use <u>General Definition II</u>. Here $PX^{-1}(-\infty, x]$ or, $Q(-\infty, x]$ is a point function.

2.2.1 Distribution Function

- Let X be a random variable defined on (Ω, \mathcal{S}, P) . Define a point function F(.) on \mathbb{R} by $F(x) = Q(-\infty, x] = P\{\omega : X(\omega) \le x\}$ for all $x \in \mathbb{R}$. Here the function F is called the distribution function of X.
- ▶ The <u>distribution function</u> of X is $F(x) = P(X \le x)$.
- \blacksquare A real-valued function F defined on $\mathbb R$ that is
- i) non-decreasing $[x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)],$
- ii) right continuous $[F(x+0) = \lim_{h\to 0+} F(x+h) = F(x)]$ and
- iii) satisfies $F(-\infty) = 0$ and $F(+\infty) = 1$,

is called a <u>distribution function</u> (DF).

 \blacktriangleright The set of discontinuity points of a DF F is at most countable.

Example 2.3. Let $\Omega = \{H, T\}$ and S be the class of all subsets of Ω . Define X by X(H) = 1, X(T) = 0 and P assign equal masses to $\{H\}$ and $\{T\}$. Then find the distribution function of the random variable X.

$$\Rightarrow Now P(X = 1) = \frac{1}{2}, P(X = 0) = \frac{1}{2}, so$$

$$F(x) = PX^{-1}(-\infty, x] = P(X \le x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } 0 \le x < 1 \\ 1 & \text{if } 1 \le x \end{cases}$$

[Do It Yourself] 2.9. Let $\Omega = \{HH, HT, TH, TT\}$ and S be the class of all subsets of Ω . Define X by $X(\omega) = No$. of heads in ω , $\omega \in \Omega$. Then find the DF of X, assuming that the coin is fair.

[Do It Yourself] 2.10. Let Ω be the outcome of tossing a fair coin thrice and S be the class of all subsets of Ω . Define X by $X(\omega) = No$. of heads in ω , $\omega \in \Omega$. Then find the DF of X.

Example 2.4. Let $\Omega = [0,1]$, $S = \mathcal{B}[0,1]$. Define X by $X(\omega) = \omega$, $\omega \in \Omega$. For every subinterval I of [0,1], let P(I) be the length of the interval, the find the DF of X. \Rightarrow Here

$$F(x) = P(\omega : X(\omega) \le x) = \begin{cases} 0 & \text{if } x < 0 \\ P([0, x]) & \text{if } 0 \le x \le 1 \\ 1 & \text{if } 1 < x \end{cases} = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } 1 < x \end{cases}$$

[Do It Yourself] 2.12. Check whether the following function is a DF? Also find $P(\{X > 1/4\})$, $P(\{1/3 < X \le 3/8\})$ or, simply P(X > 1/4), $P(1/3 < X \le 3/8)$.

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } 0 \le x < \frac{1}{2} \\ 1 & \text{if } x \ge \frac{1}{2} \end{cases}$$

 $\begin{array}{l} [\underline{Hint}:\ F\ is\ \ \ \ \ (derivative);\ lim_{x\to 0^+}F(x)=0=F(x), lim_{x\to \frac{1}{2}^+}F(x)=1=F(\frac{1}{2});\ F(-\infty)=0,\ F(\infty)=1;\ P(\{X\leq \frac{1}{4}\}\cup \{X>\frac{1}{4}\})=1\Rightarrow P(\{X\leq \frac{1}{4}\})+P(\{X>\frac{1}{4}\})=1] \end{array}$

[Do It Yourself] 2.13. Check whether the following function is a DF?

$$F(x) = \begin{cases} 0 & \text{if } x \le 1\\ 1 - \frac{1}{x} & \text{if } 1 < x \end{cases}$$