Chapter 3

Expectations and Generating Functions

3.1Expectation or, Mean

- If X is a discrete RV with pmf $p_k = P(X = k), k = 1, 2, \dots$, then the expectation of
- X or, EX exists and $EX = \sum_{k=1}^{\infty} kP(X=k) = \sum_{k=1}^{\infty} kp_k$, if $\sum_{k=1}^{\infty} |k|p_k < \infty$ i.e. convergent. \blacktriangleright If X is a discrete RV with pmf $p_k = P(X=k)$, $k=1,2,\cdots$, then the expectation of g(X) or, E[g(X)] exists and equals $\sum g(k)p_k$, if $\sum |g(k)|p_k < \infty$ i.e. convergent.
- Some series properties-I: i) $\sum \frac{1}{n_p^p}$ is convergent for p > 1 and divergent for $p \le 1$. ii) $\sum \frac{1}{n^2}$ is convergent and equals $\frac{\pi^2}{6}$. iii) $\sum (-1)^n \frac{1}{n}$ is convergent. iv) Absolute convergence \Rightarrow Convergence i.e. $\sum |a_n| < \infty \Rightarrow \sum a_n < \infty$.
- Some series-II: i) $(1-x)^{-1} = 1 + x + x^2 + \dots = \sum_{n=0}^{\infty} x^n$. ii) $(1-x)^{-2} = 1 + 2x + 3x^2 + \dots = \sum_{n=1}^{\infty} nx^{n-1}$. iii) $(1-x)^{-3} = \sum_{n=2}^{\infty} n(n-1)x^{n-2}$. iv) $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$. $v) \ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$. $\star i), ii), iii), v) converges if <math>|x| < 1$.

[Do It Yourself] 3.1. Show that EX does not exist for the pmf: $P(X = x) = \frac{6}{\pi^2} \frac{1}{x^2}, \ x = 1, 2, \cdots$

- \blacksquare If X is a <u>continuous RV</u> with pdf f, then the expectation of X or, EX exists and $EX = \int_{-\infty}^{\infty} xf(x) dx$, if $\int |x|f(x) dx < \infty$ i.e. convergent.
- ▶ If X is a continuous RV with pdf f, then the expectation of g(X) or, E[g(X)] exists and equals $\int g(x)f(x) dx$, if $\int |g(x)|f(x) dx < \infty$ i.e. convergent.

[Do It Yourself] 3.4. Show that EX does not exist for Cauchy pdf $f(x) = \frac{1}{\pi(1+x^2)}, x \in \mathbb{R}$. [<u>Hint</u>: Show $\int xf(x) dx = 0$, but $\int |x|f(x) dx$ does not exists]

[Do It Yourself] 3.5. Let X have the uniform distribution on the first N natural numbers i.e. $P(X = i) = \frac{1}{N}$, $i = 1, 2, \dots, N$. Then find EX, EX^2, EX^3 .

[Do It Yourself] 3.7. If X be a RV with pdf $f(x) = \frac{2}{x^3}$, if $x \ge 1$. Then find EX, EX^2, EX^3 .

[Do It Yourself] 3.8. Feluda and Bomkesh plays a coin-tossing game. Feluda gets Rs/-1 if head turns up and gives Rs/- 1 if tail turns up. If the probability of getting head is p then find the expected gain of Feluda.

[Hint: $X = Gain \ of \ Feluda, \ P(X = 1) = p, \ P(X = -1) = 1 - p \Rightarrow EX = 2p - 1$]

[Do It Yourself] 3.9. If X is a RV with pdf $f(x) = \frac{1}{\theta}$, if $0 < x < \theta$. Show that EX exists and then find EX.

[Do It Yourself] 3.12. An urn contains a white and b black balls. Balls are taken one by one with replacement until the first black ball is drawn. What is the expected number of white balls preceding the first black ball?

 $[\underline{Hint}:\ P(B)=\frac{b}{a+b}=p, P(W)=\frac{a}{a+b}=q,\ X=RV\ denoting\ the\ no.\ of\ white\ balls\Rightarrow P(X=x)=pq^x,\ x=0,1,\dots\Rightarrow EX=\frac{q}{p}]$

[Do It Yourself] 3.13. A target is made of 3 concentric circles of radii $\frac{1}{\sqrt{3}}$, 1, $\sqrt{3}$ (cm) respectively. Shots within the inner circle counts 4 points, next ring counts 3 points, outer ring 2 points and outside radii $\sqrt{3}$ count 0 points. Let X be the distance of the hit from the center (cm) and the pdf of X is

$$f(x) = \begin{cases} \frac{2}{\pi(1+x^2)} & \text{if } x > 0\\ 0 & \text{if } o.w. \end{cases}$$

What is the expected value of the score in i) One shot, ii) Four shot.

$$[\underline{Hint}: Y = Hit\ points,\ P(Y = 4) = \int_0^{1/\sqrt{3}} \frac{2}{\pi(1+x^2)} dx,\ P(Y = 3) = \int_{1/\sqrt{3}}^1 \frac{2}{\pi(1+x^2)} dx; 4.EY]$$

[Do It Yourself] 3.14. Find the expected number of throws of a fair die until a 6 is obtained.

[Do It Yourself] 3.19. Let X be a continuous random variable with the probability density function

$$f(x) = \begin{cases} ax^2, & 0 < x < 1, \\ bx^{-4}, & x \ge 1, \\ 0, & otherwise, \end{cases}$$

Where a and b are positive real numbers. If E(X) = 1, then find $E(X^2)$.

[Do It Yourself] 3.20. Let X be a random variable with probability mass function

$$P(X=n) = \begin{cases} \frac{1}{10}, & n=1,2,\cdots,10\\ 0, & otherwise. \end{cases}$$

Then find
$$E(\max\{X,5\})$$
.
 $[\underline{Hint}: EY = \sum_{x=1}^{10} \max\{x,5\}P(X=x) = \sum_{x=1}^{5} 5P(X=x) + \sum_{x=6}^{10} xP(X=x)]$

3.1.1Expectation Properties

Theorem 3.1. Prove the following Theorems: If X is a random variables such that $EX < \infty$ Also a, b are finite real numbers then:

- 1. E(a + bX) exists and E(a + bX) = a + bEX.
- 2. $|E(X)| \le E|X|$.
- If X is a bounded RV then EX^r exists.
- \Rightarrow If X is continuous RV and EX $< \infty \Rightarrow E(a+bX) = \int (a+bx)f(x) dx = a \int f(x) dx +$ $b \int x f(x) dx = a + bEX$. Proceed similarly when X is discrete RV.
- \square If X is continuous RV and EX $< \infty \Rightarrow |EX| = |\int x f(x) \ dx| \le \int |x| f(x) \ dx = E|X|$.
- $\square X$ is a bounded $RV \Rightarrow \exists \alpha \in \mathbb{R} \text{ s.t. } P(|X| \leq \alpha) = 1. \text{ So } \int |x|^r f(x) \ dx \leq \alpha^r < \infty.$

[Do It Yourself] 3.21. If a random variable X takes non-negative integer values, then show that $EX = \sum_{x=0}^{\infty} P(X > x)$, provided the series converges. Hence show that $EX = \sum_{x=0}^{\infty} P(X > x)$ $\sum_{x=0}^{\infty} [1 - F(x)].$

[Do It Yourself] 3.22. If X, Y are non-negative continuous RV with DF F(x), G(x)respectively. Further it is given that $F(x) \geq G(x)$, $\forall x \geq 0$. Then show that $EX \leq EY$, provided expectations exists.

[Hint: Easy]

Example 3.4. If X is a random variable with mean EX. Then show that i) EX = $\int_0^\infty [1 - F(x) - F(-x)] dx = \mu$. ii) Also show that $EX^2 = \int_0^\infty 2x[1 - F(x) - F(-x)] dx$. $\Rightarrow \underbrace{Hint:} \ \mu = \int_{-\infty}^{\infty} xf(x) \ dx = \int_{0}^{\infty} xf(x) \ dx + \int_{-\infty}^{0} xf(x) \ dx = \int_{0}^{\infty} (1 - F(x))dx - \int_{0}^{\infty} zf(-z)dz = \int_{0}^{\infty} (1 - F(x))dx + \int_{0}^{\infty} x \ dF(-x) = \int_{0}^{\infty} (1 - F(x))dx - \int_{0}^{\infty} F(-x)dx.$

[Do It Yourself] 3.23. Find EX for the random variable X with distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - (1 - x)^n & \text{if } 0 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

[Hint: Here X is a non-negative random variable]

[Do It Yourself] 3.25. A random variable X has probability density function f(x) = $\alpha x e^{-\beta^2 x^2}$, x > 0, $\alpha > 0$, $\beta > 0$. If $E(X) = \frac{\sqrt{\pi}}{2}$, determine α and β . [Hint: There will be two equations]

3.1.2Moments

- If EX^k exists, then EX^k is the k^{th} moment of (the distribution function of) X about the origin.
- ▶ This is also called k^{th} raw moment and denoted by $m_k = EX^k$, $k \in \mathbb{N}$.
- ▶ If $E|X|^{\alpha} < \infty$ for some positive real number α , we call $E|X|^{\alpha}$ the $\underline{\alpha}^{th}$ absolute moment of X.
- Let k be a positive integer and c be a constant. If $E(X-c)^k$ exists, we call it the moment of order k about the point c.
- ▶ If we take $c = EX = \mu$, then $E(X \mu)^k$ is the <u>central moment</u> of order k. The k^{th} order central moment is denoted by $\mu_k = E(X - \mu)^k$.
- The term $E(X \mu)^2$ is called the <u>variance</u> of X. We write $\sigma^2 = var(X) = E(X \mu)^2$.
- The quantity σ is called the standard deviation (SD) of X.
- $\blacksquare E(X-c)^2$ is minimum for c=EX. So, $V(X)=E(X-EX)^2 \leq E(X-c)^2$. $\triangleright E(X-c)^2 = E(X-EX+EX-c)^2 = E(X-EX)^2 + E[(X-EX)(EX-c)] + E(EX-c)^2 + E(EX-c)^2$ $E(X - EX)^2 + (EX - c)^2$. Minimum when c = EX.
- $\mu_n = E(X \mu)^n = m_n \binom{n}{1} \mu m_{n-1} + \binom{n}{2} \mu^2 m_{n-2} \dots + (-1)^n \mu^n.$ $V(X) = \mu_2 = E(X EX)^2 = E(X \mu)^2 = EX^2 \mu^2 = EX^2 E^2X.$
- ▶ $E[X(X-1)(X-2)\cdots(X-k+1)]$ is called factorial moments of order k.

[Do It Yourself] 3.27. If X is a non-negative RV and EX = 0. Then show that P(X = 0) = 1.

 $[\underline{Hint}: \sum x_i P(X=x_i) = 0, \ \forall i \Rightarrow x_i = 0, \ \forall i \Rightarrow P(X=0) = 1]$

[Do It Yourself] 3.29. Show that Var(X) = 0 iff X is degenerate.

 $E[Hint: EX = a, EX^2 = a^2 \Rightarrow V(X) = 0; E(X - \mu)^2 = 0 \Rightarrow \sum_{x_i} (x_i - \mu)^2 P(X = x_i) = 0$ $0 \Rightarrow x_i = \mu, \ \forall i \Rightarrow P(X = \mu) = 1$].

[Do It Yourself] 3.31. Let X be a continuous random variable with the probability density function $f(x) = \frac{1}{(2+x^2)^{3/2}}, x \in \mathbb{R}$. Then $E(X^2)$ (A) equals 0 (B) equals 1 (C) equals 2 (D) does not exist

[Do It Yourself] 3.32. Pareto's distribution with parameters a, b (both are positive) is defined by the PDF

$$f(x) = \begin{cases} \frac{ba^b}{x^{b+1}} & \text{if } x \ge a \\ 0 & \text{if } x < a \end{cases}$$

Show that the moment of order n exists iff n < b. If b > 2, find the mean and the variance of the distribution.

[Do It Yourself] 3.33. Poisson distribution with parameters $\lambda(>0)$ is defined by the PMF: $P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$, $x = 0, 1, 2, \cdots$. Find EX, EX^2, EX^3 . What is mean and

[Hint: Since factorial is in pmf, we will use factorial moments]

Symmetric Random Variable 3.1.3

- A random variable X is symmetric about a point 'a' if $P(X \ge a + x) = P(X \le a x)$,
- A RV X is symmetric about a point 'a' if 1 − F(a + x) + P(X = a) = F(a − x), ∀x.
- ▶ A CRV X is symmetric about a point 'a' iff f(a-x) = f(a+x), $\forall x$.
- ▶ A RV X is symmetric about a point 'a' and $E[X] < \infty$, then EX = a.
- A RV X is symmetric about a point 'a' and E|X| < ∞, then Median(X) = a.</p>
- A number x is called a quantile of order p (or $(100p)^{th}$ percentile) for the RV X (or, for the DF F of X) if $P(X \le x) \ge p$, $P(X \ge x) \ge 1 - p$, 0 .
- Quantile of order p for the RV X is denoted by ζ_p(X).
- ▶ If x is a quantile of order p for the RV X with DF $F \Rightarrow p \leq F(x) \leq p + P(X = x)$. ▶ If X is a continuous RV and x is a quantile of order $p \Rightarrow F(x) = p$.
- ▶ We can easily find the median by putting p = 1/2.
- [Do It Yourself] 3.37. Let X is a continuous random variable with pdf f. If it is symmetric about the point 'a' and EX exists, then show that EX = a.

$$\begin{array}{l} [\underline{Hint}:\ EX = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} (x-a) f(x) dx + a = \int_{-\infty}^{\infty} u f(u+a) du + a = \int_{-\infty}^{\infty} u f(u+a) du + a = \int_{-\infty}^{\infty} u f(u+a) du + a = \int_{-\infty}^{\infty} (a-z) f(z) dz + a = 2a - \int_{-\infty}^{\infty} z f(z) dz \end{array}$$

[Do It Yourself] 3.41. The probability density function f(x) of a random variable X is

symmetric about 0. Then find
$$\int_{-2}^{2} \int_{-\infty}^{x} f(u) du dx$$
.

$$[\underline{Hint}: I = \int_{-2}^{2} \int_{-\infty}^{x} f(u) du dx = \int_{-2}^{2} F(x) dx = \int_{-2}^{2} [1 - F(-x)] dx = 4 - I]$$

[Do It Yourself] 3.43. Let X be a continuous random variable with the probability density function symmetric about 0. If $V(X) < \infty$, then which of the following statements is true? (A) E(|X|) = E(X) (B) V(|X|) = V(X) (C) V(|X|) < V(X) (D) V(|X|) > V(X). $[\underline{Hint}: EX = 0, E|X| = \int_{-\infty}^{\infty} |x|f(x)dx = 2\int_{0}^{\infty} |x|f(x)dx = 2\int_{0}^{\infty} xf(x) > 0]$