3.2 Generating Function

■ The generating function of a random variable X is a function of the form E[f(t,X)], provided the expectation exists. Here t is a parameter.

3.2.1Probability Generating Function (PGF)

- PGF is specially meant for a discrete distribution which has its jumps at non-negative integer values of the random variable X.
- Let X be a RV with pmf $P(X = x) = p_x$, $x = 0, 1, 2, \dots$, then the PGF is defined by $E(t^X) = \sum_x t^x P(X = x) = \sum_x t^x p_x = p_0 + t p_1 + t^2 p_2 + \cdots$. It is convergent for |t| < 1. PGF is denoted by $P_X(t)$ or, P(t).
- ▶ Note that: $\sum_{x=0}^{\infty} t^x p_x \leq \sum_{x=0}^{\infty} t^x$ is convergent for |t| < 1 (Comparison test). ▶ If $EX^r < \infty$ then EX = P'(1), E[X(X-1)] = P''(1), E[X(X-1)(X-2)] = P'''(1)and so on.
- ▶ PGF is not applicable for continuous distribution.

Example 3.9. Consider the pmf of a binomial distribution with parameter n, p i.e. $X \sim$ Bin(n,p). It has $pmf p_x = P(X=x) = \binom{n}{x} p^x q^{n-x}$, $x=0,1,\cdots,n$. Then find the PGF. Hence find E(X), E[X(X-1)] and V(X).

 $\Rightarrow The \ PGF \ is \ P_X(t) = E(t^X) = \sum_{x=0}^n t^x P(X=x) = \sum_{x=0}^n \binom{n}{x} (pt)^x q^{n-x} = (q+pt)^n, \forall t.$ $E(X) = P'(1) = np(q+pt)_{|t=1}^{n-1} = np(q+p)^{n-1} = np.$

Similarly, $E[X(X-1)] = n(n-1)p^2 \Rightarrow EX^2 = n(n-1)p^2 + np$. So $V(X) = EX^2 - E^2X = n(n-1)p^2 + np - n^2p^2 = np - np^2 = npq$.

[Do It Yourself] 3.44. Consider the pmf of a poisson distribution with parameter λ i.e. $X \sim Poi(\lambda)$. It has pmf $P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$, $x = 0, 1, 2, \cdots$. Then find the PGF. Hence find E(X), E[X(X-1)] and V(X).

[Do It Yourself] 3.45. Consider the pmf of a geometric distribution with parameter p i.e. $X \sim Geo(p)$. It has pmf $P(X = x) = pq^x$, $x = 0, 1, 2, \cdots$. Then find the PGF. Hence find E(X), E[X(X-1)] and V(X).

Theorem 3.2. If X, Y are non-negative integer valued independent RVs with PGFs $P_X(t)$, $P_Y(t)$ respectively. Then show that PGF of X + Y is $P_{X+Y}(t) = P_X(t)P_Y(t)$.

 \square Let $P_X(t)$ is defined for $|t| < t_1$, $P_Y(t)$ is defined for $|t| < t_2$.

Take $t_0 = \min\{t_1, t_2\} \Rightarrow P_{X+Y}(t)$ is defined for $|t| < t_0$.

Now $P_{X+Y}(t) = E(t^{X+Y}) = E(t^X)E(t^Y) = P_X(t)P_Y(t)$.

Note that, since X, Y are independent $\Rightarrow t^X$, t^Y are independent $\Rightarrow E(t^{X+Y}) = E(t^X)E(t^Y)$.

[Do It Yourself] 3.49. If $X_1 \sim Bin(n_1, p)$, $X_2 \sim Bin(n_2, p)$ and X_1, X_2 are independent. Then show that $X_1 + X_2 \sim Bin(n_1 + n_2, p)$.

 $[\underline{Hint}: Show \ P_{X_1+X_2}(t) = (q+pt)^{n_1+n_2} \Rightarrow It \ is \ a \ PGF \ of \ Binomial \ distribution]$

[Do It Yourself] 3.50. If $X_1 \sim poi(\lambda_1)$, $X_2 \sim Poi(\lambda_2)$ and X_1, X_2 are independent. Then show that $X_1 + X_2 \sim Poi(\lambda_1 + \lambda_2)$.

3.2.2Moment Generating Function (MGF)

- Let X be a RV defined on (Ω, \mathbb{S}, P) . The function $M_X(t) = M(t) = E(e^{tX})$ is known as the moment generating function (MGF) of the RV X provided the expectation exists in some neighborhood of the origin i.e. $|t| < \varepsilon$ for some $\varepsilon > 0$.
- ▶ The MGF uniquely determines a DF and conversely if the MGF exists, it is unique.
- \blacktriangleright The requirement M(t) exists in a neighborhood of zero is a very strong requirement that is not satisfied by some common distributions. So we can't say that MGF always exists.
- ▶ MGF can be applicable for both discrete and continuous distributions.
- ▶ If the MGF M(t) of a RV X exists for $|t| < \varepsilon \Rightarrow$ The derivatives of all order exist at

$$t = 0 \text{ and } EX^r = \frac{d^r}{dx^r} M_X(t)_{|t=0}. \text{ Also, } E(X - \mu)^r = \frac{d^r}{dx^r} M_{X-\mu}(t)_{|t=0}.$$

$$\blacktriangleright \text{ Note that, } M(t) = E(e^{tX}) = 1 + tEX + \frac{t^2}{2!} EX^2 + \frac{t^3}{3!} EX^3 + \dots = \sum_{r=0}^{\infty} \frac{t^r}{r!} m_r.$$

[Do It Yourself] 3.57. Find the MGF, EX, VX for the following distributions: i) $P(X = x) = \frac{6}{\pi^2} \frac{1}{x^2}$, $x = 1, 2, 3, \dots$, ii) Bin(n, p), iii) $Poi(\lambda)$

- [Do It Yourself] 3.58. Find the MGF, EX, VX for the following distributions: i) $Gamma(\alpha, \beta)$ distribution: $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \ x > 0, \ \alpha, \beta > 0.$
- ii) Laplace(α) distribution: $f(x) = \frac{\alpha}{2}e^{-\alpha|x|}, -\infty < x < \infty, \alpha > 0.$

 $\begin{array}{ll} iii) \ Laplace \ distribution: \ f(x) = \frac{1}{2\alpha} \tilde{e}^{-\frac{|x-\beta|}{\alpha}}, \ -\infty < x < \infty, \ \alpha > 0, -\infty < \beta < \infty. \\ [\underline{Hint}: \ ii) \ \frac{\alpha}{2} \int_{-\infty}^{\infty} e^{tx} e^{-\alpha|x|} \ dx = \frac{\alpha}{2} [\int_{-\infty}^{0} e^{tx} e^{-\alpha|x|} \ dx + \int_{0}^{\infty} e^{tx} e^{-\alpha|x|} \ dx] \Big] \end{array}$

[Do It Yourself] 3.59. If the MGF of X is $M_X(t)$, then show that the MGF of aX + bis $e^{at}M_X(bt)$.

Theorem 3.3. If X, Y are independent RVs with MGFs $M_X(t)$, $M_Y(t)$ respectively. Then show that MGF of X + Y is $\overline{M_{X+Y}(t)} = \overline{M_X}(t)M_Y(t)$. Extend this for n RVs.

 \square Let $M_X(t)$ is defined for $|t| < \varepsilon_1$, $P_Y(t)$ is defined for $|t| < \varepsilon_2$.

Take $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \Rightarrow M_{X+Y}(t)$ is defined for $|t| < \varepsilon$.

Now $M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX})E(e^{tY}) = M_X(t)M_Y(t)$.

Note that, since X,Y are independent $\Rightarrow e^{tX}, e^{tY}$ are independent $\Rightarrow E(e^{t(X+Y)}) =$ $E(e^{tX})E(e^{tY}).$

 \square Easy.

[Do It Yourself] 3.70. | Important Properties |: If X_1, X_2 are independent RVs. Then using MGF show that

- i) $X_1 \sim Bin(n_1, p), \ X_2 \sim Bin(n_2, p) \Rightarrow X_1 + X_2 \sim Bin(n_1 + n_2, p).$
- $ii) X_1 \sim Poi(\lambda_1), X_2 \sim Poi(\lambda_2) \Rightarrow X_1 + X_2 \sim Poi(\lambda_1 + \lambda_2).$

[Do It Yourself] 3.72. The probability mass function of a random variable X is given by $P(X = x) = k \binom{n}{x}$, $x = 0, 1, \dots, n$, where k is a constant. The moment generating function $M_X(t)$ is

(A)
$$\frac{(1+e^t)^n}{2^n}$$
 (B) $\frac{2^n}{(1+e^t)^n}$ (C) $\frac{1}{2^n(1+e^t)^n}$ (D) $2^n(1+e^t)^n$.
[Hint: Show $k = \frac{1}{2^n}$, Then $P(X = x) = \binom{n}{x}(\frac{1}{2})^x(\frac{1}{2})^{n-x}$]

3.2.3 Cumulant Generating Function (CGF)

- Let X be a RV defined on (Ω, \mathcal{S}, P) . The function $K_X(t) = K(t) = \ln[M_X(t)] = \ln[E(e^{tX})]$ is known as the <u>cumulant generating function (CGF)</u> of the RV X provided the expectation exists and positive in some neighborhood of the origin.
- Cumulants are $\kappa_r = \frac{d^r}{dx^r} K_X(t)_{|t=0}$.
- ▶ There are situations (not always) when work with cumulants are easier than work with moments.

Theorem 3.4. If X, Y are independent RVs with CGFs $K_X(t), K_Y(t)$ respectively. Then show that CGF of X + Y is $K_{X+Y}(t) = K_X(t) + K_Y(t)$. Extend this for n RVs. \square Easy.

3.2.4 Characteristic Functions (CF)

- Let X be a RV defined on (Ω, \mathcal{S}, P) . The complex-valued function ϕ defined on \mathbb{R} by $\phi_X(t) = \phi(t) = E(e^{itX}) = E(\cos tX) + i E(\sin tX), t \in \mathbb{R}$, is called the <u>characteristic function</u> (CF) of RV X.
- For Discrete RV: $\phi_X(t) = \sum_x (\cos tx + i \sin tx) P(X = k)$.
- ► For Continuous RV: $\phi_X(t) = \int_x \cos tx \ f(x) \ dx + i \ \int_x \sin tx \ f(x) \ dx$.
- ▶ Note that, $\phi(t)$ uniquely determines the DF of RV X.
- ▶ Although an MGF may not exist for some distributions but a CF always exists.

[Do It Yourself] 3.79. Show that for a constant c, $\phi_{cX}(t) = \phi_X(ct)$.

[Do It Yourself] 3.80. If X_1, X_2 are independent RVs, then show that $\phi_{X_1+X_2}(t) = \phi_{X_1}(t)\phi_{X_2}(t)$. Does the converse is true? [<u>Hint</u>: Use Cauchy distribution $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty \Rightarrow \phi_X(t) = e^{-|t|}$]

3.3 Bivariate Case

We will discuss the above scenario for bivariate case.

3.3.1 Expectation

▶ If (X,Y) is a <u>bivariate discrete RV</u> with pmf $p_{xy} = P(X = x, Y = y)$, then the expectation of g(X,Y) or, E[g(X,Y)] exists and equals $\sum_{x,y} g(x,y) p_{xy}$, if $\sum |g(x,y)| p_{xy} < \infty$ i.e. convergent.

- ▶ If (X,Y) is a <u>bivariate continuous RV</u> with pdf f(x,y), then the expectation of g(X,Y) or, E[g(X,Y)] exists and equals $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, dx \, dy$, if $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g(x,y)| f(x,y) \, dx \, dy < \infty$ i.e. convergent.
- [Do It Yourself] 3.82. If (X,Y) are jointly distributed RVs. Then show that E(aX+bY+c)=aE(X)+bE(Y)+c. [$\underline{Hint}:\ E(aX+bY+c)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(ax+by+c)f(x,y)dx\ dy$]
- [Do It Yourself] 3.83. X and Y are independent RVs. Then show that E(XY) = E(X)E(Y).
- [Do It Yourself] 3.86. Let X and Y be two positive integer valued random variables with the joint probability mass function

$$P(X = m, Y = n) = \begin{cases} g(m)h(n), & m, n \ge 1\\ 0, & otherwise. \end{cases}$$

where $g(m) = \left(\frac{1}{2}\right)^{m-1}$, $m \ge 1$ and $h(n) = \left(\frac{1}{3}\right)^n$, $n \ge 1$. Then find E(XY). $[\underline{Hint}: EXY = \sum_{x=1}^{\infty} \sum_{y=1}^{\infty} xy \left(\frac{1}{2}\right)^{x-1} \left(\frac{1}{3}\right)^y = \sum_{x=1}^{\infty} x \left(\frac{1}{2}\right)^{x-1} \sum_{y=1}^{\infty} y \left(\frac{1}{3}\right)^y = (1 - \frac{1}{2})^{-2} \cdot \frac{1}{3} (1 - \frac{1}{3})^{-2} = 4 \cdot \frac{1}{3} \cdot \frac{9}{4} = 3]$

[Do It Yourself] 3.87. Let X and Y be continuous random variables with the joint probability density function

$$f(x,y) = \begin{cases} cx(1-x), & \text{if } 0 < x < y < 1 \\ 0, & \text{Otherwise} \end{cases}$$

where c is a positive real constant. Then E(X) equals (A) 1/5. (B) 1/4. (C) 2/5. (D) 1/3.

3.3.2 Generating Functions

- Let (X,Y) be a bivariate RV, then the function $M_{X,Y}(t_1,t_2) = M(t_1,t_2) = E(e^{t_1X+t_2Y})$ is known as the moment generating function (MGF) of the RV (X,Y) provided the expectation exists for $|t_j| < \varepsilon_j$ for some $\varepsilon_j > 0$, j = 1,2.
- ▶ For discrete case $M(t_1,t_2) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} e^{t_1x+t_2y} P(X=x,Y=y)$ and for continuous case $M(t_1,t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_1x+t_2y} f(x,y) dx dy$.
- ▶ The MGF $M(t_1, t_2)$ completely determines the marginal distributions of X and Y. Moreover, $M(t_1, 0) = E(e^{t_1X}) = M_X(t_1)$ and $M(0, t_2) = E(e^{t_2Y}) = M_Y(t_2)$.
- ▶ If $M(t_1, t_2)$ exists, then moments of all orders of (X, Y) exist and will be found from $E(X^mY^n) = \frac{\partial^{m+n}M(t_1,t_2)}{\partial t_1^m \partial t_2^n}\Big|_{t_1=0,t_2=0}$.

[Do It Yourself] 3.94. X and Y are iid Bin(n,p) RVs i.e. $pmf P(X=x) = \binom{n}{x} p^x (1-x)$ $p)^{n-x}$, $x = 0, 1, \dots, n$. Then using MGF find the pmf of Z = X + Y. $[\underline{Hint}: M_X(t) = M_Y(t) = (q + pe^t)^n, \ Now \ M_{X+Y}(t) = M_X(t)M_Y(t) = (q + pe^t)^{2n} \Rightarrow Bin(2n,p) \Rightarrow P(Z=z) = \binom{2n}{z}p^z(1-p)^{2n-z}, \ z=0,1,\cdots,2n]$

[Do It Yourself] 3.95. X and Y are iid $Poi(\lambda)$ RVs i.e. $pmf P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$, $x = e^{-\lambda x}$ $0, 1, 2, \cdots$. Then using MGF find the pmf of Z = X + Y.

3.3.3 Moments and Correlation

- Let (X,Y) be a bivariate RV, if $E(|X^jY^k|) < \infty$ then $E(X^jY^k)$ is said to be a raw
- moment of order (j+k) of (X,Y). \blacktriangleright Moreover, $E(X^jY^k) = \sum_x \sum_y x^j y^k P(X=x,Y=y) = \int_x \int_y x^j y^k f(x,y) \ dxdy$.
- Let (X,Y) be a bivariate RV, if $E[|(X-EX)^j(Y-EY)^k|] < \infty$ then $E[(X-EX)^j(Y-EY)^k]$ $(EY)^k$ is said to be a central moment of order (j+k) of (X,Y).
- ▶ Moreover, $E[(X EX)^j (Y EY)^k] = \sum_x \sum_y (x EX)^j (y EY)^k P(X = x, Y = y) = \sum_x \sum_y (x EX)^j (y EY)^k P(X = x, Y = y)$ $\int_{x} \int_{y} (x - EX)^{j} (y - EY)^{k} f(x, y) \ dx dy.$
- Let (X,Y) be a bivariate RV, if $E[|(X-EX)(Y-EY)|] < \infty$ then E[(X-EX)(Y-EY)]is said to be <u>covariance</u> between (X,Y) and denoted by Cov(X,Y).
- ► Covariance: $Cov(a_1X + b_1Y + c_1, a_2X + b_2Y + c_2) = a_1a_2V(X) + (a_1b_2 + b_1a_2)Cov(X, Y) + a_1a_2V(X) + a_2A_1V(X) + a_1A_2V(X) + a_1A_2$ $b_1b_2V(Y)$.
- ▶ Covariance: Cov(X,Y) = E(XY) E(X)E(Y).
- ► Variance: $V(X) = EX^2 E^2X = E(X^2) [EX]^2$ and $V(Y) = EY^2 E^2Y = E(X^2)$ $E(Y^2) - [EY]^2$.
- ▶ Standard Deviation: $Sd(X) = \sqrt{V(X)}$ and $Sd(Y) = \sqrt{V(Y)}$.
- ▶ $Var(aX + bY + c) = a^2V(X) + b^2V(Y) + 2abCov(X, Y)$. ▶ In general, $Var(\sum_{i=1}^n a_iX_i) = \sum_{i=1}^n a_i^2V(X_i) + \sum_{i\neq j=1}^n a_ia_jCov(X_i, X_j)$.
- Correlation Coefficient between X,Y: $\rho = r_{xy} = \frac{Cov(X,Y)}{\sqrt{V(X)\ V(Y)}}$.
- ▶ If X, Y are uncorrelated $\Leftrightarrow \rho = 0$.
- ▶ If X, Y are independent $\Rightarrow \rho = 0$. If $\rho = 0 \Rightarrow X, Y$ are independent.

[Do It Yourself] 3.98. Let X and Y have the joint probability density function

$$f(x,y) = \begin{cases} e^{-y}, & 0 < x < y < \infty, \\ 0, & otherwise. \end{cases}$$

Then the correlation coefficient between X and Y equals $(A) \frac{1}{3}$. $(B) \frac{1}{\sqrt{3}}$. $(C) \frac{1}{\sqrt{2}}$. $(D) \frac{2}{\sqrt{3}}$.

[Hint: Find EX, EY, VX, VY, Cov(X,Y) then find ρ]

[Do It Yourself] 3.102. Let the random variables X_1 and X_2 have joint probability density function $f(x_1, x_2) = \begin{cases} \frac{x_1 e^{-x_1 x_2}}{2}, & \text{if } 1 < x_1 < 3, x_2 > 0, \\ 0, & \text{otherwise.} \end{cases}$

Find the covariance between X_1 and X_2 .

 $|\underline{Hint}: Easy|$

Moment Inequalities 3.3.4

- Cauchy Schwartz Inequality: If X and Y are RVs then $[E(XY)]^2 \le E(X^2)E(Y^2)$.
- Jensen Inequality: $E[g(X)] \ge g[E(X)]$ where g is a <u>continuous and convex</u> function.
- ▶ $E[g(X)] \le g[E(X)]$ where g is a continuous and concave function.
- ▶ A function g is convex (concave) if g'' > (<)0.
- ▶ $E[f(X)g(X)] \ge E[f(X)]E[g(X)]$ if f, g are monotone in the same direction.
- ▶ $E[f(X)g(X)] \le E[f(X)]E[g(X)]$ if f, g are monotone in the opposite direction.

[Do It Yourself] 3.105. Prove the following inequalities (assume that expectations exists)

- 1. $EX^2 \ge E^2X$.
- 2. $E(\frac{1}{X}) \ge \frac{1}{EX}$, X > 0. 3. $E(\sqrt{X}) \le \sqrt{EX}$, X > 0.
- 4. $E(\ln X) \le \ln(EX), X > 0.$
- 5. $E(X^{\alpha+\beta}) \ge E(X^{\alpha})E(X^{\beta}), X > 0 \text{ and } \alpha, \beta > 0.$ 6. $E(\frac{1}{X}) \ge \frac{1}{EX}, X > 0.$ 7. $E(\frac{1}{X^2}) \ge \frac{1}{EX^2}, X > 0.$