Syllabus

- Unit I: Learn how to load data, plot a graph viz. histograms (equal class intervals and unequal class intervals), box plot, stem-leaf, frequency polygon, pie chart, ogives with graphical summaries of data.
- Unit II : Generate automated reports giving detailed descriptive statistics, correlation and lines of regression.
- Unit III: Random number generation and sampling procedures. Fitting of polynomials and exponential curves. Application Problems based on fitting of suitable distribution, Normal probability plot.
- Unit IV: Simple analysis and create and manage statistical analysis projects, import data, code editing, Basics of statistical inference in order to understand hypothesis testing and compute p-values and confidence intervals.

Chapter 1

Various Statistical Graph Plotting

1.1 Using R

- ▶ 'R' Programming Language is a powerful tool to perform various statistical techniques.
- ▶ Its easy to learn and we can perform several statistical ideas in a very short time.
- We will study step by step to learn R programming.
- ▶ You need a desktop/ laptop/ mobile (in worst case) to perform the computation.

1.1.1 Installation

- If you have a desktop/ laptop then perform the following steps to install 'R'.
- ▶ Step 1: Type 'download R programming language' in Google. The first link will look like: 'https://cran.r-project.org/bin/windows/base/'.
- ➤ Step 2: Click the download option and download the '.exe' file. For me it was 'Download R 4.1.1 for Windows' with size around 85 mb.
- ► Step 3: Download 'RStudio Desktop' (Version RStudio-1.4.1717, size around 156 mb) using Google or, from the link 'https://www.rstudio.com/products/rstudio/download/.
- ▶ Step 4: Install 'R' and then 'R Studio' in your device.
- ▶ Step 5: Find 'R Studio' icon and open.
- ▶ Step 6: Initially you will found 3 panels: left is console, upper right is environment and lower right is plot section (default).
- ➤ Step 7: In console just write: '2+3' and push enter. If you get 5 then you may assume that all are going right.
- If you have a mobile (android) then perform the following steps to install 'R'.
- ▶ Step 1: Type 'R Programming Compiler' in Playstore and Install.
- ▶ Step 2: Delete sample program and write: '2+3' and tap green triangle. If you get 5 then you may assume that all are going right.

1.1.2 R Script

- PC: In top left: ' $File -> New\ File -> R\ Script$ '. We will use 'R Script' files to write and store our code. Note that now 4 panels appear in R Studio and it is the standard format. Press 'Ctrl + s' and give name say 'Code1' and save the R script. We will write and store our code in that file.
- Mobile: In top right click 'three dots': 'New' then name it say 'Code1' and save. A new 'R Script' file will open 'Code1.r' and we will write and store our code in that file.

1.1.3 Basics

- Package Install & Clear Editor: library(), install.packages("MPV"). [If does not work then install it manually]. In RStudio go to Tools -> Install Packages -> (write package name in package archieve). To clear console: Ctrl + L. To clear all variables: rm(list = ls()), To remove a: rm(a).
- Easy Mathematical Operators: Addition [2+3], Power [2 ∧ 4], log(3), log10(3), sin(pi/2), cos(pi), tan(0), exp(2), factorial(5), choose(4, 2), beta(2, 3), gamma(4).
- $\begin{array}{l} \bullet \quad \ \ \, \underline{Define \ and \ Use \ Variable: x=2, y=3, Addition \ [x+3*y], Power \ [x \wedge y], log(x*y), log10(x), factorial(x+y), \\ \hline choose(y,x), beta(2+x,3-x), gamma(y). \end{array}$
- <u>Numeric Vector:</u> a = c(1, 3, 5, 2), Addition [a + 2], Power [a ∧ 2], log(a), factorial(a), beta(a, a + 1), gamma(a), length(a), a[3], a[c(1, 4)].
- $\begin{array}{l} \bullet \quad \underline{\text{Character Vector: }} a = c(1,3,5,2), \ a > 2, \ a > 2 \ \& \ a < 4, \ a[a > 2], \ a = c(1,2,3,4), \ b = c(2,4,6,8), \ b[a > 3], \\ b = c(\text{``a1"}, \text{``a2"}, \text{``a3"}), \ cat(b, \text{``\n"}), \ b = c(\text{``a1"}, \text{``a2"}, 2), \ b[3], \ b[3] + 2, \ as.numeric(b[3]) + 2. \end{array}$
- $\begin{array}{ll} \bullet & \underline{\text{Create Vector:}} \ A) \ a = c(1,2,3), \ b = c(3,4,5), \ c = c(a,b,2,3). \ B) \ a = seq(1,10), \ a = seq(1,10,2), \ a = seq(1,10,2$
- Functions and Plot: a = c(1,3,5,2), mean(a), var(a), sd(a), sum(a), sort(a), order(a), plot(a), b = c(1,2,-1,3,2,6,7,2), plot(a,b), lines(a,b).
- $\underline{\text{Matrix:}}\ a = matrix(1:20, nrow=4),\ dim(a),\ t(a),\ rownames(a) = letters[1:4],\ colnames(a) = \\ \underline{LETTERS[1:5]},\ a = matrix(1:20, ncol=4),\ a = matrix(1:20, nrow=4, byrow=T),\ A = \\ cbind(a=1:3,b=4:6,c=7:9),\ B = rbind(a=1:3,b=4:6,c=7:9),\ Multiply:\ A\%*\%B,\ Multiply:\ Elementwise:\ A*B,\ Inverse:\ solve(A),\ Determinant:\ det(A).$

1.1.4 Data Loading

- **■** Type 1 :
- ▶ a) Small Numeric Vector e.g. 1, 2, 5, 3, 6, 9, 7 can be easily loaded into R by typing: a = c(1, 2, 5, 3, 6, 9, 7).
- b) Large Numeric Vector from a '.txt' or, '.xl' or, '.csv' can be easily loaded into RStudio: $File > Import\ Dataset$.
 - Example 1.1. Create a '.txt' file contains the data: 64, 78 48 11 47 50 47 06 63 34 22 43 77 76 66 39 44 34 84 85 24 66 18 20 10 45 62 96 09 44. Import it in R and store in a variable say 'y'.
 - ▶ R Code: Create the '.txt' file (one column vector data say 'Stat.txt' with first row name x and other rows are the data). Now go to 'File -> Import Dataset -> From Text -> Locate Stat.txt -> Import. It will open the data (close it). Copy the code shown in the console [Stat < -read.csv("C:/Users/···/Stat.txt", sep = "")] into your R Script and type 'Stat' but you will see this as a 'Data Frame'. To handle its element usually we use two methods: i) Attach-detach ii) Use 'Stat\$x'. Write 'y = Stat\$x, y' in R Script and Run.
 - ▶ You can write the data in excel file and convert it (save as -> comma delimited) into a '.csv' file. The import process is same as above.

Example 1.2. Create a '.xlsx' file (excel file) contains the data: 64, 78 48 11 47 50 47 06 63 34 22 43 77 76 66 39 44 34 84 85 24 66 18 20 10 45 62 96 09 44. Import it in R and store in a variable say 'y'.

▶ R Code: Create the '.xlsx' file (one column vector data say 'Stat.xlsx' with first row name x and other rows are the data). Now go to 'File -> Import Dataset -> From Excel -> Locate Stat.xlsx -> Import. It will open the data (close it). Copy the code shown in the console (except any warning massage and last line) into your R Script and type 'Stat' but you will see this as a 'Data Frame'. To handle its element usually we use two methods: i) Attach-detach ii) Use 'Stat\$x'. Write 'y = Stat\$x, y' in R Script and Run.

[Do It Yourself] 1.1. Create a '.xlsx' file (excel file) contains the data: 64, 78 48 11 47 50 47 06 63 34 22 43 77 76 66 39 44 34 84 85 24 66 18 20 10 45 62 96 09 44 in first column and you write a second column of your own with the same length. Import it in R and store in a two variable say ' y_1, y_2 '.

[<u>Hint</u>: Suppose name of the Data Frame is A with column names y_1, y_2 . Now 'attach(a), $y_1, y_2, detach(a)$ '].

▶ Note that, attach(a) must end with detach(a) if you write attach(a) multiple times then there will be some problems, so be careful about it.

[Do It Yourself] 1.2. Write down a matrix in R of 10 rows and 4 columns with your own data. How do you access of its particular rows and columns?

[Do It Yourself] 1.3. Write down a matrix in excel of 10 rows and 4 columns with 4 column names. Now import this matrix into R as a data frame. How do you access its particular column?

Type 2

▶ a) Suppose you have two or, more column (row) vectors then use 'cbind(rbind)' to join them.

Example 1.3. Create three column vectors, a_1 : 64, 78, 48, 11, 47, 50, 47, 06, 63, 34; a_2 : 22, 43, 77, 76, 66, 39, 44, 34, 84, 85; a_3 : 24, 66, 18, 20, 10, 45, 62, 96, 09, 44. Create a new data joining this three columns.

► R Code:

a1=c(64,78,48,11,47,50,47,06,63,34) a2=c(22,43,77,76,66,39,44,34,84,85) a3=c(24,66,18,20,10,45,62,96,09,44) a=cbind(a1,a2,a3) summary(a) boxplot(a)

- Type 3: Categorical Data (Loading and Representation)
- ▶ Categorical data are such that measurement scale consists of a set of categories.
- ▶ Marital status: never married, married, divorced, widowed (nominal or, no order).
- ▶ Hair Color: black, white, golden, red (nominal or, no order).
- ▶ Economic Status: poor, middle, rich (ordinal or, there is some order).
- ▶ Grade of a Student: bad, average, good (ordinal or, there is some order).

Example 1.4. Suppose you have a categorical data with 1 variable in Table 1.1. Represent the data graphically.

Categorical Data (1 Variable)						
Never Married		Married	Divorced	Widowed	Total	
Marital Status	180	210	70	40	500	

Table 1.1: Marital Status Data.

$ightharpoonup R\ Code$.

```
status=matrix(c(180,210,70,40),nrow=1,ncol=4,byrow=T)
rownames(status)=c("Marital Status")
colnames(status)=c("Never married","Married","Divorced","Widowed")
status
barplot(status,beside=T,main="Graphical Representation",
legend.text=rownames(status),col='green')
```

▶ R Plot: See the plot Fig. 1.1.

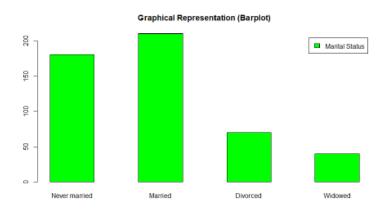


Figure 1.1: Boxplot for the data of Table 1.1.

Example 1.5. Suppose you have a categorical data with 2 variables in Table 1.2. Represent the data graphically.

Categorical Data (2 Variables)								
$\frac{MaritalStatus}{Income}$	Never Married	Married	Divorced	Widowed	Total			
Low	180	210	70	40	↓			
High	120	330	140	60	1150			

Table 1.2: Marital Status Data.

ightharpoonup R Code

status=matrix(c(180,210,70,40,120,330,140,60),nrow=2,ncol=4,byrow=T)
rownames(status)=c("Marital Status","Income")
colnames(status)=c("Never married","Married","Divorced","Widowed")
status
barplot(status,beside=T,main="Graphical Representation",
legend.text=c("low","High"),col=c('green','red'))

▶ R Plot: See the plot Fig. 1.2.

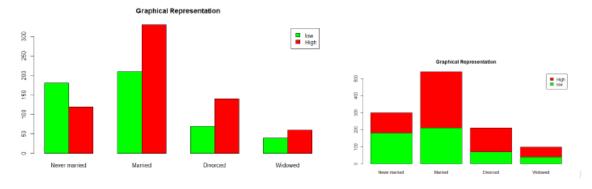


Figure 1.2: Multiple Barplot for the data of Table 1.2. a) beside=T b) beside=F Example 1.6. For the categorical data with 2 variables in Table 1.2. Represent the data graphically by Mosaic Plot.

▶ R Code: The data in Table 1.2 can be represented in excel as given in Fig. 1.3 lower panel. Now import the excel file in a data frame 'U' and use the code below.

```
U
U1 = xtabs(Freq~MarStat+Income, data=U)
U1
mosaicplot(~MarStat+Income, data= U1)
mosaicplot(~MarStat+Income, col = c("firebrick", "goldenrod1"), data= U1)
```

▶ R Plot: See the plot Fig. 1.4 (upper left).

								A	В	С	D
				-7.	coloui		1	Hair	Eye	Sex	Freq
Sex	Hair	air	BROWN	BLUE	HAZEL	GREEN	2	Black	Brown	Male	32
			2				3	Brown	Brown	Male	53
							4	Red	Brown	Male	10
				11	**	3	5	Blond	Brown	Male	3
	В	lack	32		10		- 6	Black	Blue	Male	- 11
	_		==	=-			7	Brown	Blue	Male	50
М	Br	own	53	50	25	15	8	Red	Blue	Male	10
IVI					_	7	9	Blond	Blue	Male	30
	н	Red	10	10	7			Black	Hazel	Male	10
			_		_			Brown	Hazel	Male	25
	BI	lond	3	30	5	8		Red	Hazel	Male	7
				_	_	_		Blond	Hazel	Male	5
F	В	lack	36	9	5	2		Black	Green	Male	3
	_							Brown	Green	Male	15
	Br	own	66	34	29	14		Red	Green	Male	7
				_	_	_		Blond	Green	Male	8
	н	Red	16	7	7	7		Black	Brown	Female	36
					-			Brown	Brown	Female	66
	BI	lond	4	64	5	8		Red	Brown	Female	16
								Blond Black	Brown	Female	4
		A	В	С				Brown	Blue	Female	9
	1	Mars						Red	Blue	Female Female	34 7
								Blond	Blue	Female	64
	2	Never Marri		180				Black	Hazel	Female	5
	3	Married	Low	210				Brown	Hazel	Female	29
	4	Divorced	Low	70				Red	Hazel	Female	7
	5	Widowed	Low	40				Blond	Hazel	Female	5
	6	Never Marri	ed High	120				Black	Green	Female	2
	7	Married	High	330				Brown	Green	Female	14
	8	Divorced	High	140				Red	Green	Female	7
	9	Widowed		60							8
	9	Widowed	High	60			33	Blond	Green	Female	

Figure 1.3: Multiple Barplot for the data of Table 1.2. a) beside=T b) beside=F

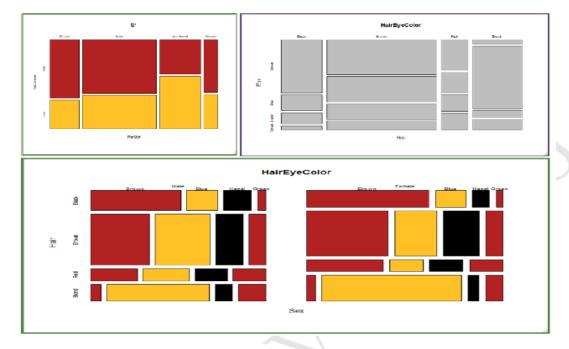


Figure 1.4: Multiple Barplot for the data of Table 1.2. a) beside=T b) beside=F

■ Type 4: High Dim. Categorical Data (Loading and Representation [Mosaic Plot])

Example 1.7. For the categorical data with 3 variables in Fig. 1.3. Represent the data graphically by Mosaic Plot.

▶ R Code: The data in Fig. 1.3 (left) can be represented in excel as given in Fig. 1.3 right panel. Now import the excel file in a data frame 'U' and use the code below.
U
U1 = xtabs(Freq~Hair+Eye+Sex, data=U)
U1
mosaicplot(~Hair+Eye, data= U1)

mosaicplot(~ Sex+Hair+Eye, col = c("firebrick", "goldenrod1", "black"), data= U1)

▶ R Plot: See the plot Fig. 1.4 upper right and below.