Chapter 2

Descriptive Statistics &

Regression
2.1.1 Descriptive Statistics

B Descriptive statistics are brief descriptive coefficients that summarize a given data set,
which can be either a representation of the entire population or a sample of a population.
B Descriptive statistics mainly divided into four parts:

1. | Measure of Central Tendency ‘: A measure of central tendency 1s a single value that
attempts to describe a set of data by identifving the central position within that set

of data. Measures are: Mean — %I}i Median = Middle Most Value (Sort),

Mode = Highest Frequency Value.

2. ‘Measurc of Dispersion || A measure of dispersion is a single value that attempts
to describe a set of data by identifying the spread of the data. It often describe

the spread of data around a central value. Measures are: Range = Max — Min,
Variance = %Z:(:zqL —7)?%, Standard Deviation = 'Variance, Mean deviation =
%Z|I¢—A|, Inter Quartile Range = Q3(75% values are below the limit)—Q1(25%

values are below the limit), Coef ficient of Variation = m‘in x 100%.

3. ‘ Measure of Skewness || A measure of skewness is a single value that attempts to de-

scribe a set of data by identifying the asymmetry of the data. It often describe the

degree of departure from the symmetry. Measures are: Moment Coeflicient of Skew-

ness gy — 2%, Pearson’'s 15t measure — %ﬂ{mm, Pearson's 2" measure =
TR ;

3(mean—median)

. ! _ B30 —20)
- . Bowley's measure = .

= Here measures (0, >, <) means
data are (symmetric, +ve skew, —ve skew) respectively. In practice, usually mea-

sures lies in (—0.8,(0.8) considered as symmetric.

4. |}leasurc of Kurtosis |: A measure of kurtosis is a single value that attempts to
describe a set of data by identifying the peakdness of the data. In other words,

it defines how heavily the tails of a distribution differ from the tails of a normal

distribution. Measure: Moment Coefficient of Kurtosis go = % — 3. Here g9
2

(0, >, <) means data are (meso kurtie, lepto kurtie, platy kurtic) respectively.
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B Raw Moments: m; = -3 "" ; z7, Central Moments: m, = -3 " (z; — T)".



Example 2.1. Find the mean, median and mode for the data (x): 45 26 19 19 43 with
frequencies (f): 2 4 3 5 4.
> [ Codel,

x=c(45,26,19,49,43)
f=c(2,4,3,5,4)

a=rep(x,f)

a

mean(a) # Mean

median(a) # Median

¥ [which(f==max(f))] # Mode

[Do It Yourself] 2.1. Find the mean, median and mode for the data (x): 1} 26 39 86
60 77 36 59 84 39 33 54 70 7§ 26 with frequencies (f): 9572744583595/ 9.

Example 2.2, Find the range, variance, sd, mean deviation about 40, mean deviation
about mean, Q1,Q3, Inter Quartile Range and Coefficient of Variation for the data (x):

70 48 84 21 84 39 64 36 61 50 27 87 41 65 35.
> [ R Codel:

x=c(70,48,84,21,84,33,64,36,61,50,27,87,41,65,33)
max(x)-min(x) # Range

var (x) # Variance

sd(x) # Standard Deviation

sum(abs (x-40)) /length(x) # Mean deviation about 50
sum(abs (x-mean(x))) /length(x) # Mean deviation about mean
quantile(x) # Quartiles

I0R=67.5-64.5 # Using (uartile Data

(sd(x) /mean(x))*100 # Coefficient of Variation

[Do It Yourself] 2.2. Find the range, variance, sd, mean deviation about 55, mean
deviation about mean, (Qy,Qs, Inter Quartile Range and Coefficient of Variation for the
data (x): 16 40 12 46 47 64 50 64 56 37 82 78 27 13 36 50 51 75 70 87.

Example 2.3. Find the raw and central moments upto order 4 for the data (x): 60 39 75

99 69 47 69 32 59 52 49 6.
> [ R Code|

x=c(60,39,75,33,69,47,69,32,59,52,49,63)

r=3 # r=1,2,3,4

sum(x"r)/length(x) # Raw Moments
sum((x-mean(x)) "r)/length(x) # Central Moments

[Do It Yourself]| 2.3. Find the raw and central moments upto order 5 for the data (z):
26 34 38 14 24 37 32 26 11 34 18 38 38 21 20 29 39 153 12 24.



2.1.2 Correlation

B The basic idea of correlation between two variables x,y i1s to check if there 1s a linear
dependencies among them or, not.
» The measure of correlation i.e. Pearson’s correlation coefficient is denoted by r., and

1 n — —
defined b = Cov(z.y) — n 2im1(Ti—T)yi—¥) )
ehln Y | Tzy V/Var(z) Var(y) ‘/ﬁ Y (-2 LY (i)

» Here —1 < rzy < 1, if 74y towards 1(—1) then the variables are high positively (nega-
tively) correlated. If rp, = 0 then there is no correlation.

Var(x) Cov(z,y)
Cov(z,y) Var(y)

p The variance-covariance matrix defined as:

. . 1 Ty

» The correlation matrix defined as:
Tay . 1

» The covariance is symmetric i.e. Cov(x,y) = Cov(y, z). Furthermore, rp,, = ry..

B Scatterplot: Suppose there are n pairs of values (z;, ;). ¢ = 1(1)n. Then draw each

point (z;,y;) in a 2 — dimensional plane XY leads to a scatterplot.

Example 2.5. Suppose we have a bivariate data of 20 students, Marks in School (x): 148
134 131 146 135 159 136 161 166 165 160 136 176 145 144 153 158 145 126 170 and Marks
in College (y): 423 405 362 369 333 417 301 425 372 438 415 393 349 306 380 338 450 326

481 359. Plot a scatter diagram, correlation coefficient between x,y and correlation matriz.

> [ Code]:

x=c(126,157,153,156,152,135,145, 132,153, 143,165,132,180,161,170,176, 165,163, 157,180)
y=c(292,367,361,366,343,326,331,307,343,322,363,296,412,377,394,384 ,370,365,349,403)
z=data.frame(x,y)

colnames(z)=c("Marks in School","Marks in College")

plot(z,col="blue") # Scatter Plot

cor(x,y) # Correlation Coefficient

cor(z) # Correlation Matrix

2.1.3 Regression

B If two variables x,y are linearly correlated. Now we take x 1s independent and y is
dependent variable. Then for an unknown data point r; we can predict the value of y;.
» The regression model is defined as y = a + bxr + ¢. Here a, b are unknown parameters
will be estimated from the data and € is error with 0 mean and constant variance.

» There are some assumptions in the regression model and the parameters are usually
estimated through least square or, maximum likelihood method.

» The fitted line is | E(y) = @ + bz | Here |b = z—;i = {E;fﬁ%_m and & =7 — bT.

Example 2.6. Fit a regression line based on the data given in Ezample 2.5. Fit a regres-
sion line Y on X and discuss the summary statistics. Draw the regression line over the
scatter plot. Also draw confidence and prediction bands.



x=c(126,157,153,166,152,135,145,132,153,143,165,132,180,161,170,176,165,163,157,180)
y=c(292,367,361,366,343,326,331,307,343,322,363,296,412,377,394,384,370,365,349,403)
fit=Im(y"™x) # y on x

summary (fit)

plot(x,y,xlab = 'Marks in School’, ylab="Marks in College’,col=’blue’,cex=1.2,
pch=16,main=’Regression Fit’)

abline(fit,lwd=2,col='green’)

# For confidence and Prediction Bands

x1 = data.frame(x=seq(min(x) ,max(x),0.5))

yl=predict(fit,interval="conf" ,newdata=x1)

y2=predict(fit,interval="pred" ,newdata=x1)
matlines(x1%$x,y1,1ty=c(1,2,2),col=c("green","red","red") ,lud=c(2,1,1))
matlines(x1%$x,y2,1ty=c(1,3,3),col=c("green", "black", "black"),lwd=c(2,1,1))

Example 2.7. Fit a 2" degree polynomial regression curve based on the data: X: 107
110 121 124 129 132 131 153 142 151 158 152 164 152 162 156 175 178 172 177 174
183 172 176; Y: 099 82 102 81 89 87 59 112 74 91 116 91 96 §5 1531 156 162 121 137 82
165 159 91 193, Discuss the summary statistics and hence find the correlation index of
order 2 i.e. r9. Draw the regression line over the scatter plot. Also draw confidence and
prediction bands.

x=c(107,110,121,124,129,132,131,153,142,151,158,152,164,152,162,156,175,178,172,
177,174,183,172,176)
y=c(99,82,102,81,89,87,59,112,74,91,116,91,96,85,131,136,162,121,137,82,165, 159,
91,193)

fit=Im(y ~ x + I(x"2)) # Polnomial Fit

summary (£fit)

plot(x,y,xlab = *X’, ylab="Y’,ylim=c(20,200),col="blue’ ,main="Polynomial Fit’,
cex=1.2,pch=16)

xl = data.frame(x=seq(min(x) ,max(x),0.5))
lines(x1%$x,predict(fit,newdata=x1),col="green",lwd=2)

# For confidence and Prediction Bands

yl=predict(fit,interval="conf" ,newdata=x1)

y2=predict(fit,interval="pred" ,newdata=x1)

matlines(x1%x,y1,1ty=c(1,2,2) ,col=c("green","red","red"),lud=c(2,1,1))
matlines (x1%x,y2,1ty=c(1,3,3) ,col=c("green","black", "black") ,lwd=c(2,1,1))

» Here from the summary statistics we have 2 = 0.4792.
Example 2.8. Fit a 3" degree polynomial regression curve based on the data in Example

2.7 and hence find the correlation index of order 3 i.e. v3. Also find the correlation coef-
ficient v, and show that :ﬂ'gy < r% < r%.



> [R Code]

x=c(107,110,121,124 ,129,132,131,153,142,151,158,152,164,152,162,156,175,178,172,
177,174,183,172,176)
y=c(99,82,102,81,89,87,569,112,74,91,116,91,96,85,131,136,162,121,137,82, 165,159,
91,193)

rxy=cor (x,y)

fit=lm(y ~ x + I(x"2)) # Quadratic Fit

summary (fit)

fitl=lm(y = x + I(x"2) + I(x"3)) # Cubic Fit

summary (fitl)

» Here 15y = 0.6177 = Tiy = 0.3816 and from the summary statistics we have r3 =

0.4792, 73 = 0.4851.

Example 2.9. Fit a 3™ degree polynomial regression curve based on the data in Example
2.7 and hence find the correlation index of order 3 i.e. r3. Also find the correlation coef-
ficient v, and show that rﬁy < r% < r%.

> [ Code

¥x=c(107,110,121,124,129,132,131,153,142,151,158,152,164,152,162,156,175,178,172,
177,174,183,172,176)

y=c(99,82,102,81,89,87,59,112,74,91,116,91,96,85,131,136,162,121,137,82, 165, 159,
91,193)

rxy=cor(x,y)

fit=Im(y ~ x + I(x"2)) # Quadratic Fit
summary (fit)

fitl=lm(y ~ x + I(x"2) + I(x"3)) # Cubic Fit
summary (fit1)

» Here 1, = 0.6177 = rgy — 0.3816 and from the summary statistics we have r3 =
0.4792, r2 = 0.4851.



