Chapter 3

Random Number Generation &
Curve Fitting

3.1 Using R

» A function f(z) is said to be a polynomial of degree 1 if f(z) = apz + a1 with ag # 0.

3.1.1 Plot Distributions

B Usually in R, we can find f(z) or, P(X = ) of a random variable X for various distri-
butions.

» For discrete distribution example: i) ‘dbinom(z,n,p)’ finds P(X = z) with X ~
Bin(n,p); ii) ‘dpois(z, )’ finds P(X = z) with X ~ Poi(\); iii) ‘dnbinom(z,r,p)’ finds

P(X = z) with X ~ Negative Binomial(r,p); iv) ‘dgeom(z,p)’ finds P(X = z) with

X ~ Geo(p).

» For continuous distribution example: i) ‘dnorm(z, i, sd)’ finds f(z) with X ~ N (i, sd);

ii) ‘dgamma(z, shape, rate)’ finds f(z) with X ~ Gamma(shape, rate); iii) ‘dchisq(z,n)’

finds f(z) with X ~ x2; iv) ‘dbeta(z, shapel, shape2)’ finds f(z) with X ~ Beta(shapel, shape2).

Example 3.1. Plot the graph of binomial distribution with parameters n = 10,p = 0.2 i.e.
Bin(10,0.2). Here, X is a random variable denotes the number of success in n*" trial then

the probability mass function (pmf) of X is|P(X =1z) = (;)pfq"—l, z=0,1,---,nfp
is the success probability and ¢ =1 —p. Here we say that X ~ Bin(n,p).

> [R Code}

n=10
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p=0.2

x=0:n # Range of Binomial

f=dbinom(x, n, p, log = FALSE) # Value of PMF D (e
Plot(x’f'type=nhn'xlim;-c(min(x)’max(x)),ylim=c(0,1),le=2,COl="blue"’ylab- P(X x) )

points(x,f,pch=16,cex=1,col="dark red")

> : See the plot Fig. 3.1.
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Figure 3.1: PMF of Binomial Distribution for n = 10, p =0.2.

[Do It Yourself] 3.1. Plot the graph of Poisson distribution with parameters A = 2 i.e.
Poi(2). Here, X is a random variable denotes the number of occurrence in the interval of

interest then the probability mass function (pmf) of X isl PX=z)= e_:!’\m, z=0,1,--- oo

A 15 the average number of events in the giwen interval. Here we say that X ~ Poi()).

[Do It Yourself] 3.2. Plot the graph of Negative Binomial distribution with parameters
r=2 p=203ie. NB(2,0.3). Here, X is q random variable denotes the number
of failures that precede the rth success then the probability mass function (pmf) of X is

PX=2)= (”;_l)prqz, r=0,1,--- ,00[; r > 1. Here we say that X ~ NB(r,p).

[Do 1t Yourself] 3.3. Piot the graph of Geometric distribution, with parameters p = 0.3
i.e. Geo(0.3). Here, X 4s q random variable denotes the number of failures that precede the
1% success then the probability mass function (pmf) of X isE(X =z)=pg¢*, £=0,1,... ,o?,.
Here we say that X ~ Geo(p).
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B Geometric distribution is a special case of negative binomial distribution forr=1.

Example 3.2. Plot the graph of normal distribution with parameters p = 0.4,sd = 0 = 1.2

i.e. N(0.4,1.2). Here, X is a random variable with probability density function (pdf) of
X s ﬁm) = —\/%_T;e—m(m"“)z, —0 << ooJ; p is mean and o 1S sd. Here we say that
X ~ N(u,0).

> (R Codel;

x=seq(-5,5,0.1) # Generate sequence of x values
f=dnorm(x, mean = 0.4, sd = 1.2) # Generate f(x)
plot(x,f,type="1" ,xlim=c (min(x) ,max(x)),ylim=c (0, 1) ,1wd=2,col=

> : See the plot Fig. 3.2.
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Figure 3.2: PDF of Normal Distribution for p = 04, sd=0=12.

Example 3.3. Plot the multiple graphs of normal distribution from N (0.4,1.2), N(0.4, 0.6)
and N(0.4,1.8).

x=seq(—5,5,0.1) # Generate sequence of x values
f=dnorm(x, mean = 0.4, sd = 1.2) # Generate £ (x)
f1=dnorm(x, mean = 0.4, sd 0.6) # Generate f(x)

= = f(x)
£2=dnorm(x, mean = 0.4, sd 1.8) # Generate ) ' ) .
plot(x,£ ,type="1" ,x1lim=c (min(x) ,max(x)) ,ylim=c(0,1) ,1wd=2,col= b?'.ue' I,'g'lab nE(x)")
lines(x,f1l ,type="1",xlim=c (min (x) ,max (x)) ,ylim=c(0, 1) ,1lwd=2,col= red
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lines(x,f2,type=“l" ,xlim=c (min(x) ,ma_x(x)) ,ylim=C (O, 1) ,1Wd=2,COl=ngreenn)
legend(3,0.8,legend=c("N (0.4,1.2)","N (0.4,0.6)","N (0.4,1.8)"),
col=c("blue","red", "green"),1ty=c(1,1,1))

> .' See the plot Fig. 3.3.
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Figure 3.3: PDF of Normal Distribution for u=04, sd=0=1.2.

[Do It Yourself] 3.4. Plot the graph of gamma distribution with parameters shape =
a =2, rate = 8 = 0.5 i.e. Gamma(2,0.5). Here, X is a random variable with probability

density function (pdf) of X is| f(x) = ¢ alﬂa 2% le /P > 0| ais sahpe and f3 is rate.

Here we say that X ~ Gamma(a, B). Plot the multiple graphs of gamma distribution from
Gamma(2,0.5), Gamma(2,2.5) and Gamma(1.2,2).

[Do It Yourself] 3.5. Plot the graph of Chi-square distribution with parameters df =
n=3i.e. x5 Here, X is a random variable with probability density function (pdf) of X is

M2-1e=2/2 15 0| n s degrees of freedom. Here we say that X ~ x2.

(@) = gz
Plot the multiple graphs of Chi-square distribution from x%, x2 and x2.

[Do It Yourself] 3.6. Plot the graph of Beta distribution with parameters shapel = a =
1.1, shape2 = b = 1.3 i.e. Beta(1.1,1.3), (Type I). Here, X is a random variable with

probability density function (pdf) of X is|f(z) = mﬁ;w“”l(l -z 0<z<1f ab

are shape parameters. Here we say that X ~ Beta(a,b). Plot the multiple graphs of Beta
distribution from Beta(1.5,1.4), Beta(1.1,1.4) and Beta(1.5,1.1).

B Exponential distribution is a special case of Gamma distribution for a = 1.
B You can easily plot any distribution function i.e. F(z) = P(X < z) instead of PMF/
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PDF by using ‘q.’ instead of ‘p’ command. For example, ‘gbinom’,‘qnorm’ for binomial
and normal distribution respectively,

» Also theoretically the range of x is (-0, 00), S0 just use feasible range for a distribution.

3.1.2 Random Number Generation

B Usually in R, we can generate random numbers from various distributions. This is a
very strong feature of ‘R Programming’.

> For discrete distribution example: i) ‘rbinom(y,n,p)’
samples from X ~ Bin(n, p); ii) ‘rpois(y. \)’
iii) ‘rnbinom(

generate y number of random

generate random samples from X ~ Poi());
y,7,p)’ generate random samples from X ~ Negative Binomial(r,p); iv)
‘rgeom(z, p)’ generate random samples from X ~ Geo(p).

» For continuous distribution example: i) ‘rnorm(y,u, sd)’ generate random samples

from X ~ N(u,sd); i) ‘rgammal(y, shape, rate)’ generate random samples from X ~
Gammal(shape, rate); iii) ‘rchisq(y, n)’ generate random samples from X ~ x2; iv) ‘rbeta(

y, shapel, shape2)’ generate random samples from X ~ Beta(shapel, shape2); v) ‘runif(y, a,b)’
generate random samples from X ~ Ula, b].

Example 3.4. Generate 50 random samples from binomial distribution with parameters
n=10,p =02 ie. Bin(10,0.2). Also draw the histogram.

> (R Code];

y=rbinom(50, 10, 0.2) # Generate 50 Random Samples from Bin(10,0.2)
¥

hist(y,col="green’) # Plot may be different for each run

> : See the plot Fig. 3.4.

Histogram of y

Figure 3.4: Histogram of Bin(10,0.2) for 50 random samples.
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[Do It Yourself] 8.7. Generate 100 random samples from Poi(2), N B(2,0.3), Geo(0.3).
Also draw the respective histograms.

Example 3.5. Generate 500 random samples from Normal distribution with parameters
pu=1 sd=0=121e N(1,1.2). Also draw the histogram.

» | R Code|:

y=rnorm(500, 1, 1.2) # Generate 500 Random Samples from N(1,1.2)

y
round(y,3) # To round off numbers

hist(y,col=’green’) # Plot may be different for each run
hist(y,col=’red’,breaks=15) # Different intervals

» | R Plot]: See the plot Fig. 3.5.

Hstogram of y Mistogram of y
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Figure 3.5: Histogram of N(1,1.2) for 500 random samples: a) Default Breaks b)
15 Breaks.

[Do It Yourself] 3.8. Generate 1000 random samples from Gamma(2,2.5), x3, Beta(1.1,1.4),
U[2.5). Also draw the respective histograms.

3.1.3 Sampling Procedures

B Population is a large group and usually we want to draw conclusion about it. Practically
it is quite difficult to work with the population due to various associated costs.

B Sample is a part of the population based on which you will draw the conclusion about
the population.

> As we will use the sample instead of population, it is very important to know how we
will draw the sample from a population.

» It is also important how many samples (l.e. sample size) we will draw from the popu-
lation to get a better result. However, it is beyond the scope of this book.

» The sampling frame is the actual list of individuals that the sample will be drawn from.
Ideally, it should include the entire target population. For Example, if you have a 1 sq.
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km. garden consists with coconut, mango, apple and palm tree and you want to sample
mango, coconut tree then the sampling frame will be the whole list of mango, coconut
tree.

B Here we will use R to draw n number of samples using various sampling methods.

B Usually we use two types of sampling procedure i) Probability sampling methods (e.g.
Simple random sampling, Systematic sampling, Stratified sampling, Cluster sampling) and
ii) Non-probability sampling (e.g. Convenience sampling, Voluntary response sampling,
Purposive/ Judgement sampling, Quota sampling).

| Eimple Random Sampling (SRSJ: Here we will draw sample from whole population
and each member will select with equal probability.

» SRS can be drawn in two ways: a) With replacement i.e. SRSWR and b) Without
replacement i.e. SRSWOR.

Example 3.6. Suppose there are 100 people numbered from 1 to 100. You want select 20
among them to give movie ticket. Use SRSWR (one people may get multiple tickets) and
SRSWOR to select these lucky people.

> [R Codel:

yi=sample(c(1:100),size=20,replace =T) # Sample using SRSWR
yi
y2=sample(c(1:100) ,size=20,replace =F) # Sample using SRSWOR
y2

[Do It Yourself] 3.9. Suppose there are 10 plant named: Areca Palm, English Ivy, Indian
Basil, Spider Plant, Snake plant, Weeping Fig, Azalea, Dracaena, Aloe Vera and Small
Coconut. Select four of these by using SRSWR and SRSWOR.

M | Systematic SamplingJ: Just randomly draw a starting point and then select rest of the
element at a regular interval.

» The best way is to draw random samples from Systematic Sampling is to use Circular
Systematic Sampling. For example, you want to draw n = 12 samples from population of
size N = 90. Then just draw any number 7 from 1 to N and find a number k = N/n =
90/12 ~ 7 (nearest integer). The samples are 7,7 + k,---. Note that, if any sample cross
the value 90 then we will divide that number by 90 and take ‘remainder + 1'.

Example 3.7. Suppose there are 90 people numbered from 1 to 90. You want to select 17
among them to give movie ticket. Use Circular Systematic Sampling to select these lucky
people.

> [R Codel

N=90
n=17
r=sample(c(1:90) ,size=1) # One sample using SRS
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r
k=N/n

k=5 # Check the above k and write the nearest integer
samp=seq(r,r+k*n,k) # Generate systematic sample

samp=samp’%90+1 # Use modulo function i.e. ramainder
samp

[Do It Yourself] 3.10. Suppose there are 1000 trees with numbering. Select 140 of these
by using Circular Systematic Sampling.

| litratiﬁed Samplingl: Divide the whole population into strata (or, homogenous subsets)
based on similar characteristics and then use SRS or, Systematic RS from each strata.
» Sample size may not be equal for each strata.

Example 3.8. Suppose there are 800 students in Zoology. Among them 500 are girls and
300 are boys. You want to select 50 among them with equal number of boys and girls for
a scholarship. Use Stratified Sampling to select these lucky people.

> [R Code]

fem=samp1e(c(1:500),size=25,replace =F) # Sample for Strata 1
fem
ma_1=sample(c(1:300),size=25,rep1ace =F) # Sample for Strata 2
mal

[Do It Yourself] 3.11. Suppose there are 1200 students in Zoology. Among them 800
are girls and 400 are boys. You want to select 60 among them for a conference with same
proportion reflects the population. Use Stratified Sampling to select these lucky people.

[Do It Yourself] 3.12. Suppose you want to study the characteristics of students with
various annual family income. Then you may create strata (groups) according to the
annual family income i.e. based on some income range, draw SRS.

[ | [guster Sampling ]: Divide the whole population into subgroups based on similar char-
acteristics like the population (i.e. cluster) and then use RS to select one or, more cluster.
» In single-stage cluster sampling, all members of the chosen clusters are then included
in the study.

» In two-stage cluster sampling, first select the cluster and then select its member ran-
domly (instead of all like single-stage).

» In multi-stage cluster sampling, is an extension of two-stage sampling.

» For example, A research firm in the UK conducted a survey in which it divided the
country into its counties and randomly selected some of these counties as a cluster sample
(the first stage of sampling). Each county was then divided into its towns, and areas were
chosen at random from each town (the second stage of sampling). Finally, within each
town, each town was divided into small areas and households were selected at random
from each area. These households formed the sample population for the research study
(third stage of sampling).
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Example 3.9. The company has offices in 50 cities across the country (all with roughly
the same number of employees in similar roles). Due to travel restriction, it is not possible
to visit every office to collect the data. Now using R, find 10 office (stage 1 cluster). Then
from these 10 offices select 5 employees from each office (stage 2 cluster).

3.1.4 Fitting Exponential Curve

» The exponential regression model is defined as y = aee. Here a,b are unknown
parameters will be estimated from the data.

» Taking log both sides we have, Wl(y) — & + bz + € |, where @’ = In(a), € = In(e). Now

we can fit simple linear regression with a = e?.

Example 3.10. Fit an ezponential curve y = aeb® based on the data: X: 0 0.01 0.03 0.05
0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21; Y: 1 1.08 1.06 1.38 2.09 8.54 6.41 12.6 22.1
29.05 65.32 99.78. Draw the regression line over the scatter plot.

> [R Codel:

x=C(0,0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19,0.21)
y=c(1,1.03,1.06,1.38,2.09,3.54,6.41,12.6,22.1.39.05,65.32,99.78)
yi=log(y)

fit=1m(yl ~ x) # Lin Reg Fit

a=exp(fit$coefficients[1])

b=fit$coefficients[2]

summary (fit)

plot(x,y,xlab =X, ylab=’Y’,y1im=c(0,100),c01=’blue’,main=’Exponential Fit’,
cex=1.2,pch=16)

x1 = seq(min(x),max(x)+0.1,0.01)

y1 = axexp(b*x1)

lines(x1, y1, 1ty =1, col = "darkgreen", 1lwd =2)

> : See the plot Fig. 3.0.

CHAPTER 3. RANDOM NUMBER GENERATION & CURVE FITTING 51



Sourav Rana, Visva-Bharati

3.1. USING R

Exponentlal Fit

Figure 3.6: Fitting exponential curve over data.
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[Do It Yourself] 3.13. Fit an ezponential curve y = ae®® based on the data: X: 0 0.01
0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21; Y: 1 1.08 1.06 1.38 2.09 3.54 6.41 12.6

22.1 39.05 65.32 99.78. Draw the regression line over the scatter plot.

3.1.5 Fitting Distribution

Example 3.11. Twelve dice were thrown 2630 times and each time the number of dice
which had 5 or, 6 on the uppermost face was recorded. The result are as follows:

No. of dice 0 1 2 3 4 5 6
wih upper 5,6

Frequency 18 115 326 548 611 519 307
No. of dice 7 8 9 10 11 12 -
wih upper 5, 6

Frequency 133 40 Il 2 0 0 -

Using R, fit a binomial distribution when p is unknown. Also fit a binomial distri-

bution when p = 1/3.

> (R Code}

x=c(0,1,2,3,4,5,6,7,8,9,10,11,12)

f=c(18,115,326,548,611,519,307,133,40,11,2,0,0)

n=sum (f)
m=12
dat=rep(x,f)
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hist(dat,col="blue",xlab="x",main="Histogram") # Idea about the Distribution
p=mean(dat)/m # Estimate of p = bar(x)/m

q=1-p

f1=fx0 # Initialize expected frequency
f1{1]1=q"m # Intial value is q°m

for (1 in 1z14) {
f10i+1]1=((m-i+1) /i) *(p/q) *£1[i]

}

f1[13]=1-sum(f1) # Adjusting total probability
Ef=n*xf1 # Expected frequency
Qut=data.frame(x,Ef,f)

colnames(Out) =c("|x|", "|Expected Frequency|", "|Observed Frequency|")
format (Qut, scientific = F,digit = 3)

> : See the plot Fig. 3.7.

Histogram
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| x léxpeéted Frequency | iobgerved %requencyl

I
1 0 18.68824 18
2 1 114.41520 115
3 2 321.05568 326
4 3 546.00052 548
5 4 626.77191 611
6 5 511.63879 519
7 6 304.53990 307
8 7 133.17766 133
9 8 42.46639 40
10 9 9.62935 1L
11 10 1.47385 2
12 11 0.13672 0
13 12 0.00581 0

Figure 3.7: Fitting Binomial distribution over data.
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W Second part is easy, only change the line p = 1/3 instead p = mean(dat)/m, rest are
same.

Example 3.12. The following data represents number of telephone calls received in a
particular hour

No. of Calls 0 1 2 3 4
Frequency 7 33 54 38 35

No. of Calls 5 6 7 8 9 & more
Frequency 15 7 4 1 1

Using R, fit a poisson distribution when \ is unknown.
> [R Codel:

x=c(0,1,2,3,4,5,6,7,8,9)
f=c(7,33,54,38,35,15,7,4,1,1)

n=sum (f)

dat=rep(x,f)

hist(dat,col="blue",xlab="x",main="Histogram") # Idea about the Distribution
lam=mean(dat) # Estimate of lambda = bar(x)

f1=f*0 # Initialize expected frequency

fi[1]=exp(-lam) # Intial value is e~(-lam)

for (i in 1:8) {

fi[i+1]=(1lam/i)*f1[i]

¥

£1[10]=1-sum(f1) # Adjusting total probability

Ef=n*f1 # Expected frequency

Out=data.frame(x,Ef,f)

colnames(Out) =c("|x|", "|Expected Frequency|", "|Observed Frequency|")
format (Out, scientific = F,digit = 3)

» | R Plot|: See the plot Fig. 3.8.
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Histogram
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|x| |Expected Frequency| |observed Frequency |

i 0 11.21
2 i 32,01 33
3 2 45.72 54
4 3 43.53 38
5 4 31.09 35
6 5 17.76 15
7 6 8.45 7
8 7 3.45 4
9 8 1.23 1
10 9 0.54 1

Figure 3.8: Fitting Poisson distribution over data.

[Do It Yourself] 3.14. Given a hypothetical distribution withx: 0123 4 5 and f:210
195 96 21 5 2. Fit a negative binomial distribution on the data.

Example 3.13. The following data represents the height and frequency of 180 students

Height 144 - 149 149-154 154 - 159 159 - 164
Frequency 1 3 24 58
Height 164 - 169 169 - 174 174 - 179 179 - 184
Frequency 60 27 2 2

Using R, fit a normal distribution. Also draw the normal curve over the histogram.
» (B Codel;

x=seq(146.5,181.5,5) # Midvalues
f=c(1,3,24,58,60,27,2,2)

n=sum (f)

dat=rep(x,f)
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hist(dat,xlab="Height",main="Histogram",ylim=c(0,max(f)+3)) # ylim needed for curve
xbar=mean(dat) # Estimate of mu = mean(x)
s=sd(dat)
curve (n*5*dnorm(x,xbar,s),col="blue",add=T) # Add curve
xi=seq(144,184,5) # Intervalvalues
x1=(xi-xbar)/s # Normalize
yl=dnorm(x1) # Standard normal value
Fl=pnorm(x1) # Df values
=c(0,F1,1) # Extended DF, including -Inf, Inf
F3= diff(F2) # Actual Probability values
Ef=nsF3 # Expected frequency
x1=c(-Inf,x,Inf) # Extended x, including -Inf, Inf
£1=c(0,£,0) # Extended f, including -Inf, Inf
Out=data.frame(x1,Ef,f1)
colnames(Out) =c("|x(Mid)|", "|Expected Frequency|", "|Observed Frequency|")
format(Out, scientific = F,digit = 3)

> (R Plot l See the plot Fig. 3.9.
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|x(4id) | |Expected Frequency| |Observed Frequency|
1 -Inf 0.0208 0
2 146 0.4801 1
3 152 5.1184 3
4 156 24.9018 24
5 162 55.6166 58
6 166 57.2210 60
7 172 27.1232 27
8 176 5.9041 2
9 182 0.5868 2
10 Inf 0.0270 ]

Figure 3.9: Fitting Normal distribution over data. In first column, instead of x(Mid),
it is better to write the class interval e.g. —oo — 144, 144 — 149, --- | 184 — oo.
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