Remark 1
Neyman-Plarson MP test procedure may be looked upon as a particular case of SPRT.
Remark 2

$$
z_{i}^{0}=\log \frac{f\left(\theta_{1}, \underline{x}\right)}{f\left(\theta_{0}, \underline{x}\right)}
$$

The trivial case. $P\left(z_{1}^{\circ}=0\right)=1$ will be ignored. In this case $f(x ; \theta)=f\left(x ; \theta_{0}\right)$ and Ho will be accepted iv. without maxing any observation.
Determination of A and B
The stopping bounds A and $B(<A)$ and strength $(\alpha$, are used to determine an SPRT.

$$
A=\frac{1-\beta}{\alpha} ; B=\frac{\beta}{1-\alpha}, 0<\alpha<1,0<\beta<1 \text {. }
$$

Pf. According to the rule, the event is stopped exactly after m observations if
$\lambda_{n a} \geqslant A$., say the space set is

$$
\begin{aligned}
& R_{m}^{\prime}=\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right): \lambda_{m}(x) \geqslant A\right\} . \\
& R_{m}^{0}=\left\{\left(x_{1}, x_{2}, \cdots, x_{m}\right): \lambda_{m}(x) \leq B\right\} .
\end{aligned}
$$

If an observed $\underline{x} \in\left\{\begin{array}{l}R_{m}^{\prime} \text {, it means after taring the }\end{array}\right.$ m th olesurvation to is rejected.
Hence

$$
\begin{aligned}
& \alpha=P[x \in \text { rejection region/Ho is true }] \\
& =\underset{\infty}{\infty}\left[\underline{x} \in \bigcup_{n=1}^{\infty} R_{m}^{1} \mid H_{0}\right] \\
& =\sum_{n=1}^{\infty} P\left(R_{m}^{\prime} / H_{0}\right) \text { (since the sets } R_{m}^{\prime}, m=1,2, \ldots \\
& \text { are mutually disjoint; } \\
& =\sum \int_{R_{m}^{\prime}} f_{0}(x) d x \leq \frac{1}{A} \sum_{m=1}^{\infty} \int_{R_{m}^{\prime}} f_{1}(x) d x \\
& \begin{array}{l}
=\frac{1}{A} P\left\{\underline{x} \in \bigcup_{m=1}^{\infty} R_{m}^{\prime} \mid H_{1}\right\} \quad\left[\because \frac{f_{1}}{f_{0}} \geq A\right] \\
=\frac{1}{A} P\left\{\begin{array}{l}
\text { R }
\end{array}\right]
\end{array} \\
& =\frac{1}{A} P\left\{H_{0} \text { is rejected } / H,\right\} \\
& =\frac{1-\beta}{A} \text {. }
\end{aligned}
$$

similarly,

$$
\begin{aligned}
\beta & =P\left\{\bigcup_{m=1}^{\infty} R_{m}^{0} \mid A_{1}\right\} \\
& =\sum_{m=1}^{\infty} \int_{R_{m}^{0}} f_{1 m}(\underline{x}) d \underline{x} \leqslant B \sum_{m=1}^{\infty} \int_{R_{m}^{0}} f_{0}(\underline{x}) d \underline{x} \\
& {\left[\because \cdot f_{1} \leq B\right] } \\
& =B(1-\alpha)
\end{aligned}
$$

$$
\therefore \quad \alpha \leq \frac{1-\beta}{A} \Rightarrow A \leq \frac{1-\beta}{\alpha}
$$

and $\beta \leq \frac{\beta(1-\alpha)}{} \Rightarrow \quad \beta \geqslant \frac{\beta}{1-\alpha}$.
An appoximation is made by equating the stopping boundaries

$$
\begin{aligned}
& A=\frac{1-\beta}{\alpha} \\
& B=\frac{\beta}{1-\alpha} .
\end{aligned}
$$

Remark 3
SPRT terminates with probability 1 under both 10 and H. [prof omitted].

Give the SPRT for testing to: $\theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}\left(>\theta_{0}\right)$
Example in sampling from a normal density.

$$
\begin{aligned}
& 9 \text { from a normal density. } \\
& f(x, \theta)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}}\left(\frac{x-\theta}{\sigma}\right)^{2},-\infty<x<\infty \\
& \text { unoron. }
\end{aligned}
$$

where σ known.
Ans)

$$
\begin{aligned}
& \text { ere } \sigma \text { noon. } \\
& \begin{aligned}
& \frac{f\left(x_{i}, \theta_{1}\right)}{f\left(x_{i}, \theta_{0}\right)}=e^{-\frac{1}{2 \sigma^{2}}\left[\left(x_{i}-\theta_{1}\right)^{2}-\left(x_{i}-\theta_{0}\right)^{2}\right]}=e^{-\frac{1}{2} \sigma^{2}}\left[\left(\theta_{0}-\theta_{1}\right)\left(2 x_{i}-\theta_{0}-\theta_{1}\right)\right] \\
& z_{i}^{0}=\log \frac{f\left(x_{i}, \theta_{1}\right)}{f\left(x_{i}, \theta_{0}\right)}=\frac{\theta_{1}-\theta_{0}}{\sigma^{2}}\left(x_{i}-\frac{\theta_{0}+\theta_{1}}{2}\right) \\
& \log \lambda_{m}=\sum_{i=1}^{m} z_{i}=\frac{\theta_{1}-\theta_{0}}{\sigma^{2}}\left[\sum x_{i}-\frac{m\left(\theta_{0}+\theta_{1}\right)}{2}\right]
\end{aligned} \\
& \text { jet Ho if }
\end{aligned}
$$

Reject tho if

$$
\begin{aligned}
& \text { Ho if } \\
& \quad \frac{\theta_{1}-\theta_{0}}{\sigma^{2}}\left[\sum x_{i}-\frac{m\left(\theta_{0}+\theta_{1}\right)}{2}\right]=\operatorname{cog} \frac{1-\beta}{\alpha} \\
& \Rightarrow \sum_{i=1}^{2} x^{0} \geqslant \frac{\delta^{2}}{\theta_{1}-\theta_{0}} \operatorname{cog}\left(\frac{\beta}{1-\alpha}\right)+\frac{m\left(\theta_{0}+\theta_{1}\right)}{2} ; \theta_{1}>\theta_{0}
\end{aligned}
$$

Accept tho inf.

$$
\begin{aligned}
& \frac{\theta_{1}-\theta_{0}}{\sigma^{2}}\left[\sum x_{i}-\frac{m\left(\theta_{0}+\theta_{1}\right)}{2}\right] \leq \log \frac{\beta}{1-\alpha} \\
\Rightarrow & \sum_{i=1}^{m} x_{i} \leq \frac{\sigma^{2}}{\theta_{1}-\theta_{0}} \log \frac{\beta}{1-\alpha}+\frac{m\left(\theta_{0}+\theta_{1}\right)}{2} ;\left(\theta_{1}>\theta_{0}\right)
\end{aligned}
$$

continue taming additional. oleservation as long as.

$$
\begin{aligned}
& \operatorname{wg} \frac{\beta}{1-\alpha}<\frac{\theta_{1}-\theta_{0}}{\sigma^{2}}\left[\sum x_{i}-\frac{m\left(\theta_{0}+\theta_{1}\right)}{2}\right]<\log \frac{1-\beta}{\alpha} \\
\Rightarrow & \frac{\gamma^{2}}{\theta_{1}-\theta_{0}} \log \frac{\beta}{1-\alpha}+\frac{m\left(\theta_{0}+\theta_{1}\right)}{2}<\sum x_{i}<\frac{\sigma^{2}}{\theta_{1}-\theta_{0}} \log \frac{1-\beta}{\alpha}+\frac{m\left(\theta_{0}+\theta_{1}\right)}{2}
\end{aligned}
$$

Operating characteristic (O, C. .) function of SPRT
It may be that the true value of θ is neither θ_{0} nor θ_{1} although we are testing $H_{0}: \theta=\theta_{0}$ against $H_{0}: \theta=\theta_{1}$. Performance $(L(\theta))$ of SPRT for testing testing $H_{0}:\left(\theta=\theta_{0}\right)$ against $H_{1}:(\theta=\theta)$.
The OC function $L(\theta)$ is defined as.
$L(\theta)=$ Probability of accepting $H_{0}: \theta=\theta_{6}$ when. θ is the true value of the parameter and since the. power function

$$
P(\theta)=\text { Probability of rejecting to where } \theta \text { is }
$$

the true value, we get

$$
L(\theta)=1-P(\theta)
$$

An Approximate formula of oe function can be arrived in terms of A and B as follows.

$$
L(\theta)=\frac{A^{n(\theta)}-1}{A^{n(\theta)}-B^{n(\theta)}}
$$

where for each value of θ, the value of $h(\theta)$ is to be determined so that $n(\theta)$

$$
\begin{align*}
& \text { d so that } \\
& \text { at }\left[\frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{0}\right)}\right]_{\text {there exists un }}^{n(\theta)}=1
\end{align*}
$$

Ot is proved that there exists unique value of $h(\theta) \neq 0$ such that (*) is satisfied.

Example 6 Refer back to the isp example. $x_{1}, x_{2}, \cdots x_{n}$ be i.i.d. Bernoulli (θ).
$H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}\left(>\theta_{0}^{\circ}\right)$

$$
\begin{aligned}
E_{\theta}\left[\frac{f\left(x, \theta_{1}\right)}{f\left(x, \theta_{0}\right)}\right]^{n(\theta)} & =E_{\theta}\left[\frac{\theta_{1}^{x}\left(1-\theta_{1}\right)^{1-x}}{\theta_{1} x\left(1-\theta_{0}\right)^{1-x}}\right]^{h(\theta)} \\
& =\theta\left(\frac{\theta_{1}}{\theta_{0}}\right)^{h(\theta)}+(1-\theta)\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{n(\theta)}
\end{aligned}
$$

Now 1 using (*), the equation is

$$
\begin{aligned}
& \text { Now } 1 \text { using (*), the equal }\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{h(\theta)}=1 \\
& \theta\left(\frac{\theta_{1}}{\theta_{0}}\right)^{h(\theta)}+(1-\theta) \\
& \Rightarrow \quad \theta=\frac{1-\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{h}}{\left(\frac{\theta_{1}}{\theta_{0}}\right)^{h}-\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{h}}
\end{aligned}
$$

$$
L(\theta) \simeq \frac{\left(\frac{1-\beta}{\alpha}\right)^{k}-1}{\left(\frac{1-\beta}{\alpha}\right)^{k}-\left(\frac{\beta}{1-\alpha}\right)^{h}}
$$

various points on the o.e. curve are oletained by assigning arbitrary values of h and computing the Corresponding value of θ and $L(\theta)$.
Example Refer back to normal prolelem.
First determine h.

$$
\begin{aligned}
& E\left[\frac{f(x, \theta)}{f(x, \theta 0)}\right]^{h^{\infty}}=\int_{-\infty}^{h}\left[\frac{f(x ; \theta)}{f(x, \theta 0)}\right]^{h} f(x ; \theta) d x=1 . \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x-\theta}{\sigma}\right)^{2}} \cdot e^{-\left[\frac{1}{2 \sigma^{2}}\left(\theta-\theta_{0}\right)\left(-2 x+\theta_{0}+\theta_{1}\right)\right]^{h}} \\
& \begin{array}{l}
=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty} e \\
\Rightarrow \frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2 \sigma^{2}}\left[x^{2}-2 x\left(\left(\theta_{1}-\theta_{0}\right) h+\theta\right)+\theta^{2}+\left(\theta_{1}^{2}-\theta_{0}^{2}\right) h^{2}\right]} \\
\left.\quad\left(\theta_{1}-\theta_{0}\right) h-\theta\right]^{2} \quad d x=1 .
\end{array} \\
& \Rightarrow \frac{1}{\sigma \sqrt{2 \pi}} \int_{\infty}^{\infty} \frac{e^{-\frac{1}{2 \sigma^{2}}}\left[x-\left(\theta_{1}-\theta_{0}\right) n+\theta\right]^{2}}{e^{2}}
\end{aligned}
$$

Try to mane ${ }^{\infty}$ it in a perfect sarre, the adjustment factor will be. (solve it)

$$
\begin{aligned}
& \text { ill be } \\
& \left\{\left(\theta_{1}-\theta_{0}\right) h+\theta\right\}^{2}=\left(\theta_{1}^{2}-\theta_{0}^{2}\right) h+\theta . \\
& \Rightarrow \quad h(\theta)=\frac{\theta_{1}+\theta_{0}-2 \theta}{1-\theta_{n}}
\end{aligned}
$$

Average sample Number. (A.S.N.)
The number of observation N required for a sequential test is a random variable. The expected value of N , E⿻(N) depends on the test procedure and distribution of x.
$E_{O}(N)$ is called average sample number. Smaller For testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta 1$ is given by is flo

$$
\begin{aligned}
& E(N)=\frac{L(\theta) \log B+(1-L(\theta)) \log A}{E(z)} \\
& Z=\log \frac{f\left(x ; \theta_{1}\right)}{f\left(x, \theta_{0}\right)} .
\end{aligned}
$$

Refer back to Bernoulli disfibution

$$
\begin{aligned}
& E(z)=\sum_{x=0}^{1} \operatorname{lof}\left[\frac{f(x, \theta)}{f\left(x, \theta_{0}\right)}\right] \cdot f(x ; \theta) \quad \begin{array}{l}
f(x ; \theta)=\theta^{x}(1-\theta)^{1-x} ; x=0, \\
0<\theta<1 \\
\theta^{x}(1-\theta)^{1-x}
\end{array} \\
& =\sum_{x=0} \log \left[\left(\frac{\theta_{0}}{\theta_{0}}\right)^{x}\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{1-x}\right]_{\theta_{1}}(1-\theta) \text {. } \\
& =(1-\theta) \log \frac{1-\theta_{1}}{1-\theta_{0}}+\theta \cdot \log \frac{\theta_{1}}{\theta_{0}} \text {. } \\
& =\theta \log \frac{\theta_{1}\left(1-\theta_{0}\right)}{\theta_{0}(1-\theta)}+\log \frac{1-\theta_{1}}{1-\theta_{0}} \text {. } \\
& E(N)=\frac{\operatorname{Din} L(\theta) \log B+(1-L(\theta)) \log A \text {. }}{E(z)_{\text {ibution }}}
\end{aligned}
$$

Refer back to Normal distribution

$$
\begin{aligned}
& \text { er back to Normal distribuncon } \\
& z=\log \frac{f\left(x ; \theta_{1}\right)}{f\left(x ; \theta_{0}\right)}=\frac{\theta_{1}-\theta_{0}}{2}\left(x-\frac{\theta_{0}+\theta_{1}}{2}\right) \\
& E(z)=\frac{\theta_{1}-\theta_{0}}{2 \sigma^{2}}\left(2 E(x)-\theta_{0}-\theta_{1}\right)=\frac{\theta_{1}-\theta_{0}}{2 \sigma^{2}}\left(2 \theta-\theta_{0}-\theta_{1}\right) \\
&
\end{aligned}
$$

Replace

$$
E(N)=\frac{\frac{L(\theta) \log B+(1-L(\theta)) \log A}{2 \gamma^{2}}}{E(z)}
$$

H.W. Wet x have the p.d.f.

$$
\begin{aligned}
& \text { ave the p.d.f. } \\
& f(x, \theta)=\left\{\begin{array}{l}
\theta e^{-\theta x} ; x \geqslant 0, \theta>0 \\
0 .
\end{array}\right.
\end{aligned}
$$

Construct the SPRT, obtain the O.C. function and S. SN.

Practical Problem
(1) Obtain the $A S N$ and $O C$ function for testing $H_{0}: \theta=\frac{1}{3}$ against $H_{1}: \theta=\frac{2}{3}$.

$$
f(x ; \theta)= \begin{cases}\theta^{x}(1-\theta)^{1-x}, & x=0,1 \\ 1\end{cases}
$$

$\underset{\text { Draw }}{\alpha}=.05, \beta=.05, \quad h=-\infty,-1,0,1,2,3,10, \infty$
Hint.

$$
\begin{aligned}
& \theta=\frac{1-\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{h}}{\left(\frac{\theta 1}{\theta_{0}}\right)^{h}-\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{h}}, L(\theta)=\frac{\left(\frac{1-\beta}{\alpha}\right)^{h} \text {, }}{\left(\frac{1-\beta}{\alpha}\right)^{h}-\left(\frac{\beta}{1-\alpha}\right)^{h}}
\end{aligned}
$$

putting h, find θ, then find $L(\theta)$.

Remember $0<\theta<1$

For each $\theta, L(\theta)$ find $E(N)=A S N$
(2) Let $\hat{X} \sim N(\theta, 1)$, $H_{0}: \theta=0 \quad H_{1}: \theta=2, \alpha=.05, \beta=.16$

Take $h=-\infty,-1,0,1,2,3, \infty$
Find $L(\theta)$ and $E(N)$.

