
1 Forewords

If we imagine that any observed time observations as the part of an infinite

sequence of random variables we will be capable of constructing a stochastic

process {Yt}, i.e., a valid probability model of time series. This infinite set

of time observations is called ”Ensemble” of time series. Every member of

this ensemble is a possible realization of that stochastic process {Yt}. This

realization may be sometimes discrete, i.e.,t = 1, 2, · · · , N or continuous, i.e.

X(t), 0 < t < T . So one can imagine stationary stochastic process in the

context of time series too. Likewise a stationary time series can be split in

two categories–strict stationary time series and cov./mean stationary time

series. Stationarity remains an important character in the study of time

series. Briefly speaking, for a stationary time series, probability structure

is same over a specified time interval. The term ”univariate time series”

refers to a time series that consists of single (scalar) observations recorded

sequentially over equal time increments, for example, LakeHuron data or

atmospheric concentration of CO2 (Look at R).

The most important part of time series analysis is to forecast or predict

on future observations collecting information from the available data. To

address this issue of forecasting we need to build a mathematical relation-

ship among the observations on different time points. This mathematical

function is called time series model.

Definition 1. Autocovariance: Think about a time series ensemble {Xt}.
Autocoviance is a covariance between two observations of same ensemble.

Why ”Auto”? as if we are calculating the correlations of two values of same

variables. Autocovariance of order k,

γk = cov(X(t), X(t+ k)) = E(X(t)− µ)(X(t+ k)− µ)

, where µ being the mean of the time ensemble {X(t)}. In sample structure

γ̂k = 1
n

∑n−k
t=1 XtXt+k −X

2
. Naturally, γ0 = var(X(t)).

Definition 2. Autocorrelation: It is a correlation between two observa-

tions of same ensemble.

ρk = corr(ρ(t), ρ(t+ k)) = γk/γ0

.It is also called serial correlation. A function of order of autocorrelations

k, γ(k) is autocorrelation function.k is said order/lag of autocorrelation.
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1.1 Properties of ρk

� The ACF is a way to measure the linear relationship between an ob-

servation at time t and the observations at previous times.

� For a stationary time series, ρk = ρ−k, means autocorrelation/autocovarince

of X(t), X(t+ k) and X(t), X(t− k) are same. Moving k time periods

apart forward or backward do not change the inter association between

the individuals.

� |ρk| < 1∀k as it is a correlations, so lying between ±1.

� A time series model always has a specific autocorrelation function but

the converse is not true.

� The autocorrelation function can be used for the following two pur-

poses

1. To detect non-randomness in data.

2. To identify an appropriate time series model if the data are not

random.

1.2 Checking of nonrandomness/randomness with Autocor-

relation Function

Randomness is one of the key assumptions in determining if a univariate

statistical process is in control. Most standard statistical tests depend on

randomness. The validity of the test conclusions is directly linked to the

validity of the randomness assumption. If the assumptions of constant loca-

tion and scale, randomness, and fixed distribution are reasonable, then the

univariate time series process can be modeled as:

Y (t) = A0 + εi

where εi is an error term. If the randomness assumption is not valid, then

a different model needs to be used.

When the autocorrelation is used to detect non-randomness, it is usu-

ally only the first (lag 1) autocorrelation that is of interest.This randomness

may be ascertained by computing autocorrelations for data values at vary-

ing time lags but mostly by acf of lag 1. If random, such autocorrelations
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should be near zero for any and all time-lag separations. If non-random,

then one or more of the autocorrelations will be significantly non-zero.

Note that uncorrelated does not necessarily mean random. Data that

has significant autocorrelation is not random. However, data that does not

show significant autocorrelation can still exhibit non-randomness in other

ways. Therefore, some time series data require a more rigorous checking of

randomness. In these cases, a battery of tests, which might include check-

ing for autocorrelation, are applied since data can be non-random in many

different and often subtle ways.

Let us have two ACF plots below (in R command is acf, acf(y) where y

is your series). Remember for a stationary time series model ACF will be
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tailing off (getting smaller not zero) as the value of lag will be increased.

2 Basic Models

2.1 Pure Random Process(White Noise Process)

A white noise process is one with a mean zero and no correlation between its

values at different times. Any sequence of i.i.d. random variables {Zt} can

be taken as an example of white noise process (not necessarily normal, the

observations should be i.i.d.–that’s it!!). In white noise process mean is taken
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as zero. For a white noise process γk = cov(Zt, Zt+k) =

σ2z if k = 0

0 if k 6= 0
.

Naturally, autocorrelations of every order are zero.The process is mean and

strict stationary. (why?)

Figure 1: White noise process
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2.2 Random Walk

Random Walk model is the time series model where t th time observa-

tion depends on (t − 1) th time observation and on a random observa-

tion. Mathematically, X(t) = X(t − 1) + Z(t) where Zt coming from a

pure random process, E(Z(t)) = 0 and V (Z(t)) = σ2 (see it could be

normal/nonnormal). For the sake of computational simplicity, we consider

X(0) = 0. So, X(1) = Z(1), X(2) = z(1) + z(2), in general, X(t) =
∑

k =

1tZ(t)...Thus E(X(t)) = 0, V (X(t)) = tσ2.

cov(X(t), X(t+h)) = tσ2 (why?).Covariance depends on t. So random walk

is not a stationary process.
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Figure 2: Random Walk time series

2.3 Questions to be solved by R

1. . Generate a set of 200 observations from N(0,4)

2. Let the observations are zt. Plot the series joining by line.

3. Plot the ACF function of zt. Comment

4. Next consider Xt = Xt−1 + Zt. Generate 200 such Xt.Plot Xt.
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5. Plot ACF of Xt and hence comment.

Remark 1. It also follows for a stationary process that the nature of the

joint probability distribution p(Zt, Zt+k) of values separated by k intervals

of time can be inferred by plotting a scatter diagram using pairs of values

(zt, zt+k) of the time series, separated by a constant interval or lag k.

2.4 Question to be solved

The following are temperature measurements zt made every minute on a

chemical reactor:
200 202 208 204 204 207 204 202 199 201 198 200 207

202 203 205 207 211 204 206 203 203 201 198 200 206

1. Plot zt+1 versus zt

2. Plot zt+2 versus zt.

3. After inspecting the graphs, do you think that series is autocorrelated?

3 General linear process

Any stochastic process can always be written in terms of white noises {zt}
and sometimes a part of the series itself. Time series being a derivative of

stochastic process can also be expressed in terms of (white noise) zt. Since

we need to have series in infinite nature we can think a time series sequence

{Xt} in terms of linear combination of infinite white noises.

Xt = Zt + ψ1Zt−1 + ψ2Zt−2 + · · · =
∞∑
j=1

ψizi (1)

where ψi’s are the coefficients and we assumeXt is taken as the deviated form

the mean E(Xt) = µ. When Xt is claimed to be stationary it is necessary

for the coefficients ψj to be absolutely summable,i.e.,
∑∞

j=0 |ψj | <∞.

In contrast to (1) another representation of {Xt}can be thought in terms

of past observations of the same series,i,e, on Xt−1, Xt−2, · · · plus an added

white noise at.,i,e,

Xt = π1Xt−1 + π2Xt−2 + · · ·+ zt =
∞∑
j=1

πjXt−j + zt (2)

Equation (2) may be thought of as one where the current deviation Xt from

the level µ is regressed on past deviations Xt−1, Xt−2, · · · of the process.
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3.1 Relationship between the ψ weights and π weights

First let us define backward shift operator B such that Bzt = zt−1 and

hence Bjzt = zt−j . So in terms of backward shift operator equation (1) is

Xt = (1 + ψ1B + ψ2B
2 + · · · )Zt = ψ(B)Zt where ψ(B) is an infinite series

on B,i.e., ψB = 1 + ψ1B + ψ2B
2 + · · · , (ψ0 = 1, conventionally).

Similarly equation (2) can be written as

Xt − π1Xt−1 − π2Xt−2 − · · · = Zt

or

π(B)Xt = Zt

where π(B) = 1− π1B − π2B2 − · · · . Replacing Xt we get,

ψ(B)π(B)Xt = ψ(B)Zt = Xt

ψ(B)π(B) = 1

ψ(B) = [π(B)]−1

� This relationship is helpful in determining π weights knowing ψ weights

and vice-versa.

� These two representations of time series are identical to each other.

Stationarity and invertibility are two important concepts on which the

convergence(stability) of time series can be built. π(B) and ψ(B) play a

great role to conceptualize these two concepts.

Question: Write the following models in B notation, write first three π and ψ weights

Xt − .5Xt−1 = zt

Xt = zt − 1.3zt−1 + .4zt−2

Xt −Xt−1 = zt − .5zt−1

Xt −Xt−1 = zt − 1.3zt−1 + .3zt−2

.
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3.2 Conditions for stationarity and invertibility

3.2.1 Stationarity

The linear process is stationary if the polynomial of coefficients attached to

white noise has roots on or within unit circle,i.e.,ψ(B) = 0, the roots of this

equation lie on or within unit circle which means
∑
ψj <∞.

3.2.2 Invertibility

On the contrary, the process is invertible if π(B) = 0 has roots on or within

unit circle,means
∑∞

j=0 |πj | <∞.

Example Let us consider two model:

Model A: Xt = Zt + θZt−1

Model B: Xt = Zt + Zt−1/θ.

But in Model A,

Zt = Xt − θZt−1 = Xt − θ(Xt−1 − θZt−2)

= Xt − θXt−1 + θ2Zt−2

= Xt − θXt−1 + θ2Xt−2 − θ3Xt−3 + · · ·

Similarly for Model B

Zt = Xt− 1
θXt−1+ 1

θ2
Xt−2− 1

θ3
Xt−3+· · · . But Which one will be convergent

series and for what condition? Think. Well take θ = 5. What would be

your conclusion?

4 Few Particular Models: Moving Average Pro-

cess and Autoregressive Process

An autoregressive model is when a value from a time series is regressed on

previous values from that same time series. for example, yt on yt−1.

An autoregressive process of order p, AR(p) is written as

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + Zt,

where Zt ∼ WN(0, σ2) and Zt is uncorrelated with Xt with Xs for each

s < t. By backward shift operator AR(p) can be written as

φ(B)Xt = Zt
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where φ(B) = 1− φ1B − φ2B2 − · · · − φpBp.

4.1 Autoregressive Process(1)

Xt = φXt−1 + Zt

. In backward shift operator language, (1−φB)Xt = Zt which can be further

written as Xt = φkXt−k +
∑k−1

j=0 φ
jZt−j .

4.1.1 Invertibility

Remember from earlier discussion invertibility depends on the convergence

of polynomial attached to Xt, i.e., Π(B). If
∑
πi < ∞ then the process is

invertible. In AR(1), Π(B) = 1 − φB. This is always finite hence AR(1) is

always invertible.

4.1.2 Stationarity

Remember from earlier discussion stationarity depends on the convergence

of polynomial attached to Zt (white noise), i.e., ψ(B) (or roots of the equa-

tion ψ(B) = 0 lies within the unit circle). For AR(1), ψ(B) = (1−φ(B))−1.

The right hand term is an infinite series which is convergent if |φ| < 1. You

can address the problem by considering roots of ψ(B) here. Do the answers

found in both ways match? (Do it yourself)

Note For a simulated series Xt = 1.02Xt−1 + Zt (see the series is not sta-

tionary) we can see the values of the time series quickly become large in

magnitude, even for φ just slightly above 1. Such process is called explo-

sive(Try to draw the time series curve of the above equation, you will see

how the curve progresses.

So AR(1) process is stationary when |φ| < 1.
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4.1.3 Autocorrelation

Remember E(Xt) = 0. If it is E(Xt) = µ, we start with X
′
t such that

E(Xt − µ) = 0

Cov(Xt, Xt−k) = Cov(
∞∑
j=0

φj zt−j ,
∞∑
j=0

φj zt−(j+k))

= (zt + φzt−1 + φ2zt−2 + · · ·+ φkzt−k + φk+1zt−(k+1) + · · · ).

(zt−k + φzt−(k+1) + φ2zt−(k+2) + · · · )

= φk + φφk+1 + φ2φk+2 + · · ·

=
φk

1− φ2

Choose k = 0, V ar(Xt) = 1
1−φ2 and ρk = φk.

4.1.4 Autocorrelation function

Autocorrelation function of AR(1) satisfies the difference equation ρk =

φ1ρk−1, k > 0 (why?). The autocorrelation function decays exponentially

when φ is positive but oscillates in sign when φ is negative. Below are two

graphs of ACF of simulated AR(1) model where a) Xt = .8Xt + zt and b)

Xt = −.8Xt−1 + zt. The couple of blue dotted lines indicate the significance

of autocorrelations which is (exp(2∗1.96/
√
N − 3−1), exp(2∗1.96/

√
N − 3+

1)). The lines give the values beyond which the autocorrelations are (sta-

tistically) significantly different from zero.

4.2 Moving average of order 1:MA(1)

MA(1) model: Xt = zt + θ zt−1. Many textbooks and software programs

define the model with negative signs before the θ terms. This doesn’t change

the general theoretical properties of the model, although it does flip the

algebraic signs of estimated coefficient values and (unsquared) θ terms in

formulas for ACFs and variances.

4.2.1 Stationarity and Invertibility

Remember what are the conditions of the stationarity and invertibility?

MA(1) is always stationary but invertible when |θ| < 1. Why?
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4.2.2 Autocorrelation

1. Variance= V (Xt) = σ2(1 + θ2) (how?)

2. ρ1 = θ
1+θ2

(how?)

3. ρk = 0 when k > 1.

Remark 2. That the only nonzero value in the theoretical ACF is for lag

1. All other autocorrelations are 0. Thus a sample ACF with a significant

autocorrelation only at lag 1 is an indicator of a possible MA(1) model.

Example Suppose Xt = zt + .7zt−1 where zt ∼ N(0, 1).Theoretical ACF is

ρ1 = .7
1+.72

= .4698. All other ρk > 0, k > 1. The same model one can

generate by simulation in R. A plot of ACF is as follows.

Again look at the Moving average model Xt = Zt + Zt−1

.7 . This model has

exactly same autocorrelation function as Xt = zt + .7zt−1. But this model

is not invertible as 1/.7 > 1 whereas Xt = zt + .7zt−1 is invertible. The

imposition of the invertibility condition ensures that there is a
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unique MA process for a given autocorrelation function.

Homework

1. Show that AR(1)≡ MA(∞).

2. Show that MA(1) ≡ AR(∞).

3. State whether the following model is stationary/invertible. Xt−.5Xt−1 =

at − .5at−1

In R you can generate sample points directly from Moving average/autoregressive

process by the following code. ma1.sim<-arima.sim(list(ma = c(0.3),ar=c(.4)),n

= 100, sd=1). Remember this is a general code. If you have to generate

only MA then erase the word ar and vice versa.

4.3 Moving average of order 2

This process is written as Xt = Zt + θ1 Zt−1 + θ2 Zt−2 where Zt being white

noise of zero mean and sd σ2. In terms of backward shift operator MA(2)
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can be written as

Xt = (1 + θ1B + θ2B
2)Zt

.

4.3.1 Autocorrelations

γ(k) = cov(Xt, Xt+k) =



(1 + θ21 + θ22)σ2 for k = 0

(θ1 + θ1θ2)σ
2 for k = 1

θ2σ
2 for k = 2

0 for k > 2

Now find out the the autocorrelation function of MA(2).
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Problem

Take two series with zt white noise with zero mean and variance 1.

A:Xt = Zt + .5Zt−1 + .5Zt−2

B:Xt = Zt + 5Zt−1 + 5Zt−2. Simulate 100 observations from each of the

model and plot them (use plot.ts function). Which one you think invert-

ible? (Note stationarity does not hamper but span of series is inflated).

MA(2) is always stationary (why?) but invertible when θ1+θ2 < 1,θ1−θ2 <
1,|θ2| < 1 (how? we will see this later)

Remember For MA(2), the only nonzero values in the theoretical ACF

are for lags 1 and 2. Autocorrelations for higher lags are 0. So, a sample

ACF with significant autocorrelations at lags 1 and 2, but non-significant

autocorrelations for higher lags indicates a possible MA(2) model.
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4.4 Yule Walker Equations:For AR process

An important recurrence relation for the autocorrelation function of a sta-

tionary autoregressive process is found by multiplying throughout in Xt =

φ1Xt−1 + · · ·+ φpXt−p + zt (General Autoregressive process of order p) by

Xt−k for k ≥ 0, to obtain

Xt−kXt = φ1Xt−kXt−1 + φ2Xt−kXt−2 + · · ·+ φpXt−kXt−p +Xt−kzt.

On taking expected values of the above expression we obtain the difference

equation

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p, k > 0.

Note that E(Xt−kzt) vanishes since Xt−k involves the term upto zt−k and

zt is uncorrelated with zt−k. On dividing by γ0 we have difference equation

in autocorrelation.

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p (3)

If we substitute k = 1, 2, · · · , p in the above we obtain a set of linear

equations in φ1, φ2, · · · , φp in terms of ρ1, ρ2, · · · , ρp as follows.

ρ1 = φ1 + φ2ρ1 + · · ·+ φpρp−1

ρ2 = φ1ρ1 + φ2 + · · ·+ φpρp−2

. . .

ρp = φ1ρp−1 + φ2ρp−2 + · · ·+ φp

These equations are called Yule-Walker equations. We obtain Yule Walker

estimates of the parameters by replacing the theoretical autocorrelations ρk

by estimated autocorrelatons rk.

4.4.1 Variance

When k = 0 from the equation 4.4 we obtain

γ0 = φ1γ−1 + φ2γ−2 + · · ·+ φpγ−p + σ2z .

Writing as γk = γoρk,we have the variance

γ0 =
σ2

1− φ1ρ1 − φ2ρ2 − · · · − φpρp
.
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4.5 AR(2)

Xt = φ1Xt−1 + φ2Xt−2 + Zt

where Zt is white noise with mean 0 and variance σ2.

4.5.1 Stationarity of AR(2)

See the file Stationarity AR(2) ACF.pdf.

Remember for AR(2) when the roots of the difference equation in backward

shift operator are real ACF looks as a mixture of damped exponentials.

Moreover if it has a positive dominant root ACF will be positive exponential

decay, negative dominant root ACF alternates its sign rapidly as its damps

out. If the roots are complex, ACF will be damped sine wave.

4.5.2 Autocorrelations

For AR(2) the autocorrelation function satisfies the second order difference

equation

ρk = φ1ρk−1 + φ2ρk−2.

Substituting p = 2 in Yule Walker equations, the Yule Walker equations are

ρ1 = φ1 + φ2ρ1

ρ2 = φ1ρ1 + φ2

Solving equations we obtain

ρ1 =
φ1

1− φ2

ρ2 = φ2 +
φ21

1− φ2
Using ρ1 and ρ2 one can find out ρ3,ρ4 as well. Find V (Xt).

Question For a AR(2) process Xt = .75Xt−1 − .50Xt−2 + Zt,

1. draw the series.

2. Construct the difference equation on Backward shift operator.

3. Can you tell anything about the nature of the roots.

4. Deduce first four theoretical autocorrelations.

5. Plot by ACF command in R. How does the ACF look?
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4.6 Partial Autocorrelation

Initially we may not know the order of autoregressive process to fit to an

observed time series, means how to determine that Xt is dependent on Xt−1

only or Xt−1, Xt−2 or Xt−1, Xt−2, · · · , Xt−p? The ACF of all autoregressive

process are almost of similar type (either exponential decaying or damped

sinusoidal), so deciding about the order of AR process from autocorrelation

function can not be possible also. The problem is analogous to deciding on

the number of independent variables to be included in a multiple regression.

The autocorrelation for an observation and an observation at a prior

time step is comprised of both the direct correlation and indirect correla-

tions. These indirect correlations are a linear function of the correlation of

the observation, with observations at intervening time steps. It is these in-

direct correlations that the partial autocorrelation function seeks to remove.

Consider the autocorrelation at lag 2. Observation 1 effects observation 2.

Observation 1 affects observation 3 through two channels i.e. directly and

indirectly through its effect on observation 2 and observations 2’s effect on

observation 3.The autocorrelation measures both effects. The partial auto-

correlation measures only the direct effect.

Definition: A partial autocorrelation is a summary of the relationship

between an observation in a time series with observations at prior time steps

with the relationships of intervening observations removed.

Specifically, partial autocorrelations are useful in identifying the order of

an autoregressive model. The partial autocorrelation of an AR(p) process is

zero at lag p+ 1 and greater.It can be described in terms of p nonzero func-

tions of the autocorrelations. If the sample autocorrelation plot indicates

that an AR model may be appropriate, then the sample partial autocorre-

lation plot is examined to help identify the order.
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4.7 Derivation

To find partial autocorrelations we may set out this procedure as follows.

Xt = φ11Xt−1 + εt

Xt = φ21Xt−1 + φ22Xt−2 + εt

Xt = φ31Xt−1 + φ32Xt−2 + φ33Xt−3 + εt

. . .

Xt = φk1Xt−1 + · · ·+ φkkXt−k + εt

The sequence φ11, φ22, · · · , φkk are the partial autocorrelations. Multiply the

final equation above by Xt−k, take expectations and diving by the variance.

Do the same operation with Xt−1, Xt−2, Xt−3, · · · , Xt−k successively to get

the following a set of k Yule Walker equations.

ρ1 = φk1 + φk2ρ1 + · · ·+ φkkρk−1

ρ2 = φk1ρ1 + φk2 + · · ·+ φkkρk−2

. . .

ρk = φk1ρk−1 + φk2ρk−2 + · · ·+ φkk

So the solution would be
1 ρ1 ρ2 · · · ρk−1

ρ1 1 ρ1 · · · ρk−2

. . . . . . . . . · · · . . .

ρk−1 ρk−2 ρk−3 · · · 1



φk1

φk2

· · ·
φkk

 =


ρ1

ρ2

. . .

ρk

 (4)

Solving these equations for k = 1, 2, 3, · · · successively, we obtain

φ11 = ρ1

φ22 =

∣∣∣∣∣ 1 ρ1

ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣
=
ρ2 − ρ21
1− ρ21

4.7.1 Partial autocorrelations of AR(1) and AR(2)

PACF of AR(1) is just φ11 = ρ1 = φ as we are regressing Xt on Xt−1 and

using equation (4).
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PACF of AR(2): There are two PACF φ11 and φ22. Using equation (4),

φ11 = ρ1 = φ1
1−φ2 and φ22 =

ρ2−ρ21
1−ρ21

= φ2. In R you can use the function

pacf() to obtain simulated partial autocorrelation.

ar1.sim<-arima.sim(list(ar = c(0.6)),n = 100, sd=2)\\

pacf(ar1.sim)

You would have only one significance partial autocorrelation function in

this case. Lower the value of φ partial autocorrelation would be lowered

(Why?). Check with AR(2) model you will have spikes of all partial cor-

relation coefficients within the line of significance except the the first

two autocorrelations. By partial autocorrelation it is easy to identify the

model.

4.7.2 Partial autocorrelation of MA(1) and MA(2)

For MA(1) Xt = Zt+θZt−1, ρ1 = θ
1+θ2

and ρk > 0 when k > 1. Now replace

all these in equation (4). φ11 = ρ1 and φ22 =

∣∣∣∣∣∣∣
1 ρ1

ρ1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1

ρ1 1

∣∣∣∣∣∣∣
= − ρ21

1−ρ21
.

What about φ33?

Get back to equation (4) and we have φ33 =

∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ1

ρ1 1 ρ2

ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ1

ρ1 1 0

0 ρ1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 0

ρ1 1 ρ1

0 ρ1 1

∣∣∣∣∣∣∣∣∣∣

.

Similarly one can find out φkk.

Thus for MA(1) partial autocorrelations is infinite in nature rather tails

off sinusoidally. Check it in R code as well.

ACF and PACF are two identification tools for AR process and MA process.
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