BSc (Honours) Semester -III Examination 2020 Subject- Statistics Paper- CC6A (Statistical Inference-Theory) Time: 3 hours

Full Marks: 40 Answer any four questions: (Notations have usual meanings)

1. What do you understand by Point Estimation? Define the following terms and give one example for each: Sufficient Statistic, Unbiased Estimator, Consistent Estimator, Efficient Estimator. 10

2. a) Show that if T is an unbiased estimator of a parameter θ , then $\lambda_1 T + \lambda_2$ is an unbiased estimator of $\lambda_1 \theta + \lambda_2$, where λ_1 and λ_2 are known constants, but T² is a biased estimator of θ^2 . 6

b) Let T_n be an estimator of θ with variance σ_n^2 and $E(T_n) = \theta_n$. Prove that if $\theta_n \rightarrow \theta$ and $\sigma_n^2 \rightarrow 0$, as $n \rightarrow \infty$ then T_n is a consistent estimator of θ .

3. a) Let $x_1, x_2, ..., x_n$ be a random sample from a population with pdf

$$f(\mathbf{x}, \theta) = \theta e^{-\theta \mathbf{x}}; \mathbf{x} > 0, \theta > 0$$

Find Cramer-Rao lower bound for the variance of the unbiased estimator of θ .

b) State Neyman-Pearson Lemma for testing simple versus simple hypothesis. If $x \ge 1$ is the critical region for testing H₀: $\theta=2$ against the alternative H₁: $\theta=1$, on the basis of a single observation from the population

$$f(x,\theta) = \theta x^{\theta-1}, \text{ if } 0 < x < 1$$

= 0, otherwise

where $0 < \theta < \infty$.

Obtain the values of type-I and type-II errors and power function of the test.

4. a) Let $x_1, x_2, ..., x_n$ be a random sample from the Bernoulli population with parameter θ , $0 < \theta < 1$. Obtain a sufficient statistic for θ and show that it is complete. Hence find minimum variance unbiased estimator (MVUE) of θ .

b) $x_1, x_2, ..., x_{10}$ is a random sample of size 10 from a Poisson distribution with mean λ . Show that the critical region W defined by $\sum_{i=1}^{10} x_i \ge 3$, is the best critical region for testing H₀: λ =0.1 against the alternative H₁: λ =0.5.

5. What are simple and composite statistical hypotheses? Give examples. Explain the following terms in the context of testing of statistical hypothesis:

Most Powerful Test, Uniformly Most Powerful Test, Power function of a test, Level of significance.

6. a) An urn contains 6 marbles of which θ are white and others are black. In order to test the null hypothesis H₀: θ =3 against the alternative H₁: θ =4, two marbles are drawn at random (without replacement) and H₀ is rejected if both the marbles are white; otherwise H₀ is accepted. Find the probabilities of committing type-I and type-II errors.

b) Given a random sample $x_1, x_2, ..., x_n$ of size n from the distribution with pdf

$$f(\mathbf{x}, \theta) = \theta e^{-\theta \mathbf{x}}; \mathbf{x} > 0, \theta > 0$$

show that UMP test for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta < \theta_0$ is given by $W = \{x: \sum x_i \ge (1/2\theta_0)\chi^2_{\alpha, 2n}\}$. 5

7

3

6

4

10

5